
@ Pablo Oliveira Antonino

SSA 07 –Architecture Styles and Pattern

TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”

Dr. Andreas Morgenstern
andreas.morgenstern@iese.fraunhofer.de

generic
for all cases

specific
for each case

Design

Decompose

4 Reason
(among Alternatives)

5 Make Decisions
(based on Rationales, Risks,
Assumptions, Scaling Factors)

3 Explore Design Space
(with Decomposition Strategy)

6 Manifest
(populate Models and Diagrams)

Requirements
(Business Goals,
Functional and
Non-Functional,

Constraints)

Modeling
Language
(Notation)

Architecture
Drivers

(Key Functional
Requirements,

Quality
Attributes)

Skills and
Experience
(Competence

and Expertise of
Individuals)

Best Practices
(Method,

Guidance, Rules
and Standards)

Packaged
Experience
(Styles, Tactics,
(Anti)-Patterns,

Smells)

Domain
Concepts
(Reference

Architectures,
Reusable Assets)

Existing
Solutions

(Version,
Variants,
History)

1 Select Architecture Driver
by Significance (Priority or Criticality)

2 Select Views
(Views and Diagram to be populated)

7 Consolidate and Align
(across views, along perspectives, with previous
decisions made)

8 Increase Confidence
(if critical, if necessary)

Architecture Design Iteration

Literature for Software Architecture Pattern, Styles and
Tactics

…

every developer embedded developer interested Software Architect

interested Software Architectevery software Architect

Maintainability

Architecture Tactics, Styles and Patterns:
Maintainability

STY
LES

PA
TTER

N
S

Layered, Microkernel, Event bus, …

Strategy, Template, Chain of responsibilities, Adapter, Façade

TA
C

TIC
S

Single Point of Reference

Maintain Semantic Coherence

Anticipate Expected Changes

Limit Possible Options

LOCALIZE CHANGES PREVENT RIPPLE EFFECT

Maintain Interfaces

Hide Information

Open/Closed

Restrict Communication Paths/ Use an Intermediary

Abstract Common Services

© Fraunhofer IESE

6

Goal Definition

 Maintainability= „Quality attribute relating to degree of effectiveness
to which a software product can be modified by the maintainers.“

[ISO 25010]

Develop a system that is well-structured, easy to change & analyze.

Software
Product
Quality

Maintainability

Modularity

Reusability

Modifiability

Analyzability

Testability

Refinement
Legend:

© Fraunhofer IESE

7

Maintainability Strategies

R
eq

u
.

A
rc

h
.

D
es

ig
n

Im
p

l.

C
o

m
p

il.

V
 &

 V

D
ep

l.

Ex
ec

.

Strategies / Principles

Localize Changes 

Prevent Ripple Effects 

Legend:  Application of Strategy/Pattern
 Resolution of Strategy/Pattern

© Fraunhofer IESE

9

The Localize Changes Strategy

 Purpose

 Reduce number of modules directly affected by changes

 Tactic: Single Point of Reference

cmp Single Point of Reference

Component1 Component2

Code Code

cmp Single Point of Reference

Component1 Component2

Component3

Code Code

Code

© Fraunhofer IESE

10

The Localize Changes Strategy

 Purpose

 Reduce number of modules directly affected by changes

 Tactic: Abstract Common Services

cmp Single Point of Reference

Component1 Component2

Code1 Code2

similar, but not same

cmp Abstract Common Serv ices

Component1 Component2

Component3

Abstract

Concrete1 Concrete2

Code Code

Concrete1 Concrete2

© Fraunhofer IESE

11

The Localize Changes Strategy

 Purpose

 Reduce number of modules directly affected by changes

 Tactic: Maintain Semantic Coherence

cmp Semantic Coherence

Component1 Component2

Sub1_1 Sub2_1

Sub1_2 Sub2_2

Weak coupling Strong coupling

cmp Semantic Coherence

Component1 Component2

Sub1_1 Sub2_1

Component3

Sub2_2Sub1_2

© Fraunhofer IESE

12

The Localize Changes Strategy
 Purpose

 Reduce number of modules directly affected by changes

 Tactic: Limit Possible Options

© Fraunhofer IESE

13

Strategy ID Localize Changes

Purpose

 Reduce number of modules directly affected by changes
 Tactics to implement the strategy

 Single point of reference
 Abstract common services
 Maintain semantic coherence
 Limit possible options
 Anticipate expected changes (especially in product lines)

Advantages
 Cost reduction for implementing changes
 System is more understandable

Drawbacks
 Difficulty for determining “right” place of components for

semantic coherence

The Localize Changes Strategy

© Fraunhofer IESE

14

Strategy ID Prevent Ripple Effects

Purpose

 Reduce number of modules indirectly affected by changes
 Tactics to implement the strategy

 Maintain Interfaces
 Hide Information
 Open/Closed
 Restrict Communication Paths
 Use an Intermediary

Advantages
 Separation of interface and implementation
 More structured system
 More stable system

Drawbacks  Difficulty of defining interfaces in advance

The Prevent Ripple Effects Strategy

… more about strategies and tactics in Software Architecture in Practice

© Fraunhofer IESE

15

Maintainability Styles and patterns

STY
LES

PA
TTER

N
S

Layered, Microkernel, Pipes & Filters, Event bus

Strategy, Template, Chain of responsibilities, Adapter, Façade

TA
C

TIC
S

Single Point of Reference

Maintain Semantic Coherence

Anticipate Expected Changes

Limit Possible Options

LOCALIZE CHANGES PREVENT RIPPLE EFFECT

Maintain Interfaces

Hide Information

Open/Closed

Restrict Communication Paths/ Use an Intermediary

Abstract Common Services

© Fraunhofer IESE

16

 Problem/Context

 System is decomposed into
components

 Components are defined at different
abstraction levels

 Components depend on each other

 Solution

 Group components into ordered
layers

 Components in a layer may only use
services from the layer below it

 Communication over fixed interfaces

The Layered Style

cmp Layered_Component

Layer 3

Component3_2Component3_1 Component3_3

Layer 2
Component2_2Component2_1 Component2_3

Layer 1

Component1_2Component1_1 Component1_3

Interface 2

Interface 1

© Fraunhofer IESE

17

The Layered Style: Example AUTOSAR

© renesas

© Fraunhofer IESE

18

The Layered Style

 Advantages

 Reuse of layers

 Dependencies are kept local

 Exchangeability of layer implementation
(but external behavior must be the same, otherwise potential cascade of
changing behavior)

 Drawbacks

 Communication overhead

 Difficulty to decide on granularity of a layer

© Fraunhofer IESE

19

The Layered Style

Pattern ID Layered

Problem/
Context

 System is decomposed into subtasks
 Subtasks are defined at different abstraction levels
 Subtasks depend on each other

Solution
 Group subtasks into ordered layers
 Subtasks in a layer may only use services from the layer below it
 Communication over fixed interfaces

Advantages
 Reuse of layers
 Dependencies are kept local
 Exchangeability of layer implementation

Drawbacks
 Cascade of changing behavior
 Communication overhead
 Difficulty to decide on granularity of a layer

Impact on
Safety

 Improvement of safety in a layer trickles through it dependents.
 Difficulty handling mixed criticality when there is a high degree of

dependencies in a layer.
 Safety mechanisms, e.g. failure detection/management, tend to crosscut

across the functional layers.
 Layering overhead increase latencies and timing uncertainties.

Example AUTOSAR, TCP/IP

© Fraunhofer IESE

20

 Problem/Context

 Several applications use same core functionality

 Core functionality implementation should be safe and maintainable

 Core functionality is expected to remain stable

 System should be still modifiable

The Microkernel Style

 Solution

 Separate a minimal functional core from
extended services

 Microkernel (stable, maintainable)

 External services (application specific)

 Internal services (platform specific)

Client 1

ES1 ES2 ES3

Microkernel

Client 2

IS1 IS2

© Fraunhofer IESE

21

The Microkernel Style Example: PikeOS

Architecture Specific
Package

PikeOS Microkernel

Platform Specific
Package

Hardware Platform

Arinc 653 POSIXPikeOS Base
Services

ApplicationApplication

© Fraunhofer IESE

22

 Advantages

 Maintainable / modular

 Ease of adding / removing services

 Separation of policy and mechanisms

 Drawbacks

 Performance decreases (compared to monolithic system)

 Complexity of design and implementation increase

The Microkernel Style

© Fraunhofer IESE

23

The Microkernel Style

Pattern ID Microkernel

Problem/
Context

 Several applications use same core functionality
 Core functionality implementation: safe and maintainable
 Core functionality is expected to remain stable
 System should be still modifiable

Solution
Separate a minimal functional core from extended functionality and
customer-specific parts

Advantages
 Maintainable / modular
 Ease of adding / removing services
 Separation of policy and mechanisms

Drawbacks
 Performance decreases (compared to monolithic system)
 Complexity of design and implementation increase

Impact on
Safety

 Minimum code base eases qualification.
 Reuse of certified kernels.
 Expand upon infrastructural safety mechanisms (e.g. safety kernel).
 Common cause of failures / single point of failure of kernel.

Example PikeOS, EB tresos Safety OS, Linux Kernel,…

© Fraunhofer IESE

24

The Event-Bus Style

 Problem/Context

 Distributed system where many components communicate

 Connections between each communicating component not feasible/ desirable

 Solution

 Components asynchronously emit and receive events over event busses

 Components communicate with the event-bus, not directly with each other

cmp Component Model

Component1 Component2 Component3

Ev ent Bus

© Fraunhofer IESE

25

The Event-Bus Style Example: Android

From http://www.itu.dk/~panic/projects/SeamlessTracking.html

© Fraunhofer IESE

26

The Event-Bus Style

 Advantages

 Easy to add new components to the system

 Drawbacks

 No guarantee that a message arrives at the destination

 Message delay possible

© Fraunhofer IESE

27

The Event-Bus Style

Pattern ID Event-Bus

Problem
 Distributed system where many components communicate
 Connections between each communicating component not feasible

Solution
 Components asynchronously emit and receive events over event busses
 Components communicate with the event-bus, not with each other

Advantages  Easy to add new components to the system

Drawbacks
 No guarantee that a message arrives at the destination
 Message delay possible

Impact on
Safety

 Entry point for hooking safety mechanisms to failure events
 Separates failure detection from failure recovery.

 Manage redundancies using activation/deactivation events.
 Dynamic execution complicates analysis.
 CCF/SPF of the bus.

Example Satellite constellation communication, Event Bus in android

© Fraunhofer IESE

28

Styles and patterns

STY
LES

PA
TTER

N
S

Layered, Microkernel, Pipes & Filters, Event bus

Strategy, Template, Chain of responsibilities, …

TA
C

TIC
S

Single Point of Reference

Maintain Semantic Coherence

Anticipate Expected Changes

Limit Possible Options

LOCALIZE CHANGES PREVENT RIPPLE EFFECT

Maintain Interfaces

Hide Information

Open/Closed

Restrict Communication Paths/ Use an Intermediary

Abstract Common Services

© Fraunhofer IESE

29

The Strategy Pattern

 Problem

 Different variants of an algorithm are needed

 Selection of variant depends on the context

 Solution

 Define an interface for a family of algorithms to make them interchangeable

class Strategy

Context
+ Context(Strategy)
+ ContextInterface() :void

«interface»
Strategy

+ AlgorithmInterface() :void

ConcreteStrategyA
+ AlgorithmInterface() :void

ConcreteStrategyB
+ AlgorithmInterface() :void

ConcreteStrategyC
+ AlgorithmInterface() :void

-strategy

© Fraunhofer IESE

30

The Strategy Pattern Example: Sorting Algorithm

 Bubble Sort: (-) slower (+) no additional memory

 Quick Sort : (+) faster (–) additional memory

 Compile time instantiation: depending on system properties

 Runtime instantiation: depending on currently available memory

class Strategy2

Application
+ Application(SortingAlgorithm) :void
+ ContextInterface() :void

«interface»
SortingAlgorithm

+ AlgorithmInterface() :void

Bubblesort
+ AlgorithmInterface() :void

Quicksort
+ AlgorithmInterface() :void

-strategy

© Fraunhofer IESE

31

 Advantages

 Strategies can provide different implementations of the same behavior
with a clean interface

 Client can choose among implementations with different time and space trade-
offs

 Strategy eliminates conditional statements that are hard to maintain

 Strategies can be selected at runtime

 Drawbacks

 Client code must be aware of different strategies

 Strategies should implement same behavior, otherwise functional outcome
depends on instantiation and the overall behavior is hard to predict

 Communication overhead

The Strategy Pattern

© Fraunhofer IESE

32

The Strategy Pattern

Pattern ID Strategy

Problem
 Different variants of an algorithm are needed
 Selection of variant depends on the context

Solution
 Define an interface for a family of algorithms to make them

interchangeable

Advantages

 Strategies can provide different implementations of the same behavior
with a clean interface

 Client can choose among implementations with different time and space
trade-offs

 Strategy eliminates conditional statements that are hard to maintain
 Strategies can be selected at runtime

Drawbacks

 Client code must be aware of different strategies
 Strategies should implement same behavior, otherwise functional

outcome depends on instantiation
 Communication overhead

Impact on
Safety

 Entry point for expressing (safe) mode-dependent algorithms as different
strategies.

 Eases qualification by facilitating a per-strategy (e.g. per-mode) safety
analysis.

 Dynamic execution binding complicates analysis.

Example Selecting sorting functions based on free memory availability

© Fraunhofer IESE

33

The Template Method Pattern

 Problem

 Different variants of an algorithm are needed

 Variants differ only in small steps

 Solution

 Define a skeleton of an algorithm in a function, deferring some steps to other
functions that may vary

class Template-Method

AbstractClass
+ PrimitiveOperation1() :void
+ PrimitiveOperation2() :void
+ TemplateMethod() :void

...
PrimitiveOperation1()
...
PrimitiveOperation2()
...ConcreteClass

+ PrimitiveOperation1() :void
+ PrimitiveOperation2() :void
+ TemplateMethod() :void

© Fraunhofer IESE

34

The Template Method Pattern Example: Sorting

 Difference to Strategy

 in scope: strategy replaces whole algorithm, template-method only parts

 intention: strategy intended to select algorithm, template-method to build

 Concrete strategies may be implemented using template-method !

class Template-Method_Instance

SortingAlgorithm
+ Comp(int, int) :Boolean
+ Sort() :void

Sort In Descending Order
+ Comp(int, int) :Boolean
+ Sort() :void

Sort In Ascending Order
+ Comp(int, int) :Boolean
+ Sort() :void

...
if Comp(v1,v2)
...

return (v1<v2) return (v1>v2)

© Fraunhofer IESE

35

The Template Method Pattern

 Advantages

 Template Method eliminates conditional statements that are hard to maintain

 Supports Code Reuse

 Drawbacks

 Must be well documented, otherwise hard to understand

© Fraunhofer IESE

36

The Template Method Pattern

Pattern ID Template Method

Problem
 Different variants of an algorithm are needed
 Variants differ only in small steps

Solution
Define a skeleton of an algorithm in a function, deferring some steps to
other functions that may vary

Advantages
 Template method eliminates conditional statements that are hard to

maintain
 Supports code reuse

Drawbacks Must be well documented, otherwise hard to understand

Impact on
Safety

n.a.

Example Sorting in descending/ascending order

© Fraunhofer IESE

37

The Chain of Responsibility Pattern
 Problem

 A request (like error handling) is issued but it is unclear at which part of the
system the request should be handled

 Solution

 Request are passed along a chain of possible handlers until one handles it

Request
Issuer1

Request
Handler1

Request
Handler2

Request
Handler3

Request
Issuer2

Request Communication Path

© Fraunhofer IESE

38

The Chain of Responsibility Pattern Example:
Satellite Fault Management

© Fraunhofer IESE

39

The Chain of Responsibility Pattern
 Advantages

 Reduced coupling

 Added flexibility for handling requests

 Drawbacks

 No guarantee that request is handled if not pre-planned

© Fraunhofer IESE

40

The Chain of Responsibility Pattern

Pattern ID Chain of Responsibility

Problem
A request (like error handling) is issued but it is unclear at which part of the
system the request should be handled

Solution Request are passed along a chain of possible handlers until one handles it

Advantages
 Reduced coupling
 Added flexibility for handling requests

Drawbacks No guarantee that request is handled if not pre-planned

Impact on
Safety

 Organizational scheme for managing failures across crosscutting
abstractions or levels, i.e. classical way for implementing fault
management.

 Dynamic execution binding complicates analysis.

Example Satellite fault management

Safety

Safety Tactics

Safety Tactics for Software Architecture Design
W. Wu and T. Kelly

Safety Pattern

Redundancy

 Homogeneous Redundancy

 Triple Modular Redundancy

Pattern for Error Detection

 Monitor-Actuator Pattern

 Watchdog

Achieving Quality Attributes

Redundancy

 Homogeneous Redundancy

 Triple Modular Redundancy

Pattern for Error Detection

 Monitor-Actuator Pattern

 Watchdog

Homogeneous Redundancy Pattern (1/3)

“An obvious approach to solving the problem of things breaking is
to provide multiple copies of that thing.” B.P. Douglass

Pattern goal
 Improve reliability by offering multiple channels that can operate in sequence or in

parallel.

Homogeneous Redundancy Pattern (2/3)

Solution

 Improves reliability by addressing random faults (failures) in the system execution.

Drawback

 Any systematic fault in one copy of the system is replicated in its clones, thus, not proving, protection
against systematic faults (errors).

Homogeneous Redundancy Pattern (3/3)

Triple Modular Redundancy (1/2)

Pattern goal

 Enhance reliability and safety in situations where there is no fail-safe state.

Solution

 Odd number of channels operating in parallel, each in effect checking the results of all the others.

 The computational results or resulting actuation signals are compared, and if there is a disagreement,
then a “two-out-of-three majority wins“ policy is invoked.

Triple Modular Redundancy (2/2)

Drawbacks
 High recurring cost because the hardware and software in the channels must be replicated.

Achieving Quality Attributes

Redundancy

 Homogeneous Redundancy

 Triple Modular Redundancy

Tactics for Error Detection

 Monitor-Actuator Pattern

 Watchdog

Monitor-Actuator (1/2)

Pattern goal

 Improve safety in a system with moderate to low availability requirements at a low cost.

Solution

 Redundant channel differs from the primary actuation channel by providing monitoring.

 Monitor maintains a watch on the actuation channel looking for an indication that the system should be
commanded into its fail-safe state.

Monitor-Actuator (2/2)

Drawback
 Because there is minimal redundancy, the system cannot continue to function when a fault is identified.

Watchdog (1/3)

Pattern goal
 Checks that the internal computational processing is proceeding as expected.

 Check a computation timebase;

 Ensure that computation steps are proceeding in a predefined order.

Watchdog (2/3)

Solutions

 Watches out over processing of another component, ensuring that nothing is obviously wrong.

 The Actuator Channel operates independently of the watchdog, often sending a liveness message to the
watchdog.

Drawback

 Because of the minimal coverage of the Watchdog Pattern, it is rarely used alone, but combined with
other tactics.

Watchdog (3/3)

Wrap Up

Architecture Tactics, Styles and Patterns:
Maintainability

STY
LES

PA
TTER

N
S

Layered, Microkernel, Event bus, …

Strategy, Template, Chain of responsibilities, Adapter, Façade

TA
C

TIC
S

Single Point of Reference

Maintain Semantic Coherence

Anticipate Expected Changes

Limit Possible Options

LOCALIZE CHANGES PREVENT RIPPLE EFFECT

Maintain Interfaces

Hide Information

Open/Closed

Restrict Communication Paths/ Use an Intermediary

Abstract Common Services

Safety Tactics

Safety Tactics for Software Architecture Design
W. Wu and T. Kelly

Tactics for other Quality Attributes

© Fraunhofer IESE

60

Security Tactics

Security

Detecting
Attacks

Resisting
Attacks

Restoration

See
Availability

Authenticate Users
Authorize Users
Maintain Data

Confidentiality
Maintain Integrity

Limit Exposure
Limit Access

Intrusion
Detection

Identification

Audit Trail

Recovering
from an Attack

Attack
System Detects,

Resists, or Recovers
from Attacks

© Fraunhofer IESE

61

Availability Tactics

Availability

Recovery-
Preparation
and Repair

Recovery-
Reintroduction

Fault Detection Prevention

Shadow

State
Resynchronization

Rollback

Ping/Echo

Heartbeat

Exception

Voting

Active
Redundancy

Passive
Redundancy

Spare

Removal from
Service

Transactions

Process
Monitor

© Fraunhofer IESE

62

Performance Tactics

Performance

Resource
Demand

Resource
Management

Resource
Arbitration

Scheduling
Police

System Model

Task Model

Introduce
Concurrency

Increase
Available
Resources

Multiple
Copies

Events Arrive
Response

Generated within
Time Constraints

Increase
Computation

Efficiency

Manage
Event Rate

Reduce
Computational

Overhead

Control Frequency of Sampling

© Fraunhofer IESE

63

Testability Tactics

Testability

Manage
input/output

Internal
Monitoring

Completion
of an

Increment

Faults
Detected

Built-in
Monitors

Record/Playback

Separate Interface
from Implementation

Specialized Access
Routines/Interfaces

© Fraunhofer IESE

	Slide Number 1
	Slide Number 2
	Literature for Software Architecture Pattern, Styles and Tactics
	Maintainability
	Architecture Tactics, Styles and Patterns:�Maintainability
	Goal Definition�
	Maintainability Strategies
	The Localize Changes Strategy
	The Localize Changes Strategy
	The Localize Changes Strategy
	Slide Number 12
	The Localize Changes Strategy
	The Prevent Ripple Effects Strategy
	Maintainability Styles and patterns
	Slide Number 16
	The Layered Style: Example AUTOSAR
	The Layered Style�
	The Layered Style
	Slide Number 20
	Slide Number 21
	Slide Number 22
	The Microkernel Style
	The Event-Bus Style�
	The Event-Bus Style Example: Android
	The Event-Bus Style
	The Event-Bus Style
	Styles and patterns
	The Strategy Pattern
	The Strategy Pattern Example: Sorting Algorithm
	Slide Number 31
	The Strategy Pattern
	The Template Method Pattern
	The Template Method Pattern Example: Sorting
	The Template Method Pattern
	The Template Method Pattern
	The Chain of Responsibility Pattern�
	The Chain of Responsibility Pattern Example:�Satellite Fault Management��
	The Chain of Responsibility Pattern�
	The Chain of Responsibility Pattern
	Safety
	Safety Tactics
	Safety Pattern
	Achieving Quality Attributes
	Homogeneous Redundancy Pattern (1/3)
	Homogeneous Redundancy Pattern (2/3)
	Homogeneous Redundancy Pattern (3/3)
	Triple Modular Redundancy (1/2)
	Triple Modular Redundancy (2/2)
	Achieving Quality Attributes
	Monitor-Actuator (1/2)
	Monitor-Actuator (2/2)
	Watchdog (1/3)
	Watchdog (2/3)
	Watchdog (3/3)
	Wrap Up
	Architecture Tactics, Styles and Patterns:�Maintainability
	Safety Tactics
	Tactics for other Quality Attributes
	Security Tactics
	Availability Tactics
	Performance Tactics
	Testability Tactics
	Usability Tactics
	Slide Number 65

