\

% F ra u n h Ofe r I—- TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN
IESE

Ny

ap BN

=

e, il

&,

Dr. Andreas Morgenstern i||
andreas.morgenstern@iese.fraunhofer.de I. -
: b AW i‘.
TU Kaiserslautern, $S52018
Lecture “Software and System Architecture (SSA)”

Requirements
(Business Goals,
Functional and
Non-Functional,

Constraints)

U

Select Architecture Driver
by Significance (Priority or Criticality)

Select Views
(Views and Diagram to be populated)

Architecture
Drivers
(Key Functional
Requirements,
Quality
Attributes)

Skills and

Experience
(Competence
and Expertise of
Individuals)

Decompose

_

[3 Explore Design Space

(with Decomposition Strategy)

6 Manifest

Modeling
Language
(Notation)

4 Reason
(populate Models and Diagrams) (among Alternatives)

5 Make Decisions
(based on Rationales, Risks,
Assumptions, Scaling Factors)

Existing
Solutions
(Version,
Variants,
History)

specific
for each case

Consolidate and Align
(across views, along perspectives, with previous
decisions made)

Increase Confidence
(if critical, if necessary)

Best Practices
(Method,
Guidance, Rules
and Standards)

Packaged
Experience
(Styles, Tactics,
(Anti)-Patterns,
Smells)

Domain

Concepts
(GEEEE
Architectures,
Reusable Assets)

generic
for all cases

Literature for Software Architecture Pattern, Styles and

Tactics
Design Patterns

Flements of Reusahle
Object-Oriented.Sof

every developer

1 Software
4 Architecture
4 in Practice

" THIRD EDITION

every software Architect

Fs?

bl

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

B System ol Patlerns

embedded developer

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Lamguage lar
Distributed Computing

:
{

B, BT
[ICTyTEE
Eonglen & iy

interested Software Architect

SOFTWARE ARCHITECTURE

Founpations, THECRY, aND PracTice

Nt T
 Richard 8 Tapk
o, v R

interested Software Architect

i 0|

Maintainability

Architecture Tactics, Styles and Patterns:
Maintainability

Layered, Microkernel, Event bus, ...

Strategy, Template, Chain of responsibilities, Adapter, Facade

LOCALIZE CHANGES PREVENT RIPPLE EFFECT

Abstract Common Services Hide Information
Maintain Semantic Coherence Open/Closed

Anticipate Expected Changes Restrict Communication Paths/ Use an Intermediary
Limit Possible Options

SNY311vd

SOI1LOV1L

Goal Definition

B Maintainability=,, Quality attribute relating to degree of effectiveness
to which a software product can be modified by the maintainers.”

Modularity

Reusability

Software
Product Maintainability Modifiability

Quality
Analyzability

Testability [ISO 25010]

‘ Develop a system that is well-structured, easy to change & analyze.
L6

/
~ Fraunhofey

\

\

Maintainability Strategies

N R I
cE§ 2 E=3% 8
r < a0 £ 39 > a &
Strategies / Principles
Localize Changes E3)
Prevent Ripple Effects
Legend: [Application of Strategy/Pattern =

M Resolution of Strategy/Pattern

~ Fraunhofer

IESE

The Localize Changes Strategy

B Purpose
Reduce number of modules directly affected by changes

B Tactic: Single Point of Reference

cmp Single Point of Reference/

cmp Single Point of Reference/ Component3 E

g] =] Code
Componentl Component?2

2

2]
Compone mponent2

\

~ Fraunhofer

IESE

The Localize Changes Strategy

¥ Purpose

Reduce number of modules directly affected by changes

B Tactic: Abstract Common Services

cmp Single Point of Reference/

2]
Componentl

5]
Component?2

Code2

f

similar, but not same

2

cmp Abstract Common Services /

Component3 2]

Abstract 2]

K

Concrete2

A

Componentl d Component2 d

\

~ Fraunhofer

IESE

The Localize Changes Strategy

¥ Purpose
Reduce number of modules directly affected by changes

B Tactic: Maintain Semantic Coherence

cmp Semantic Coherence/ cmp Semantic Coherence/
Componentl 2] Component?2 2] Componentl 2] Component?2 2]
Subl 1 & Sub2 1 & Subl 1 & Sub2 1 &
Component3]
=]] %] zl
Sub1_2 g S22 Subl 2 ™| Gy SUD2_2

\

Weak coupling <€=P Strong coupling ~ Fraunhofer

IESE

The Localize Changes Strategy

B Purpose

Reduce number of modules directly affected by changes

B Tactic: Limit Possible Options
TYPICAL APPLE PRODUCT...

A GOOGLE PRODUCT...

| [[FING]

YOUR COMPANY'S APP...

FIRST NAME: [TYPE cD:[]
LAST NAME: TQP STAT:UJL

SSN: VER: =
1D: EE“_ i . CAT ﬁ—l

PHONE 1: I_ildl *CITY:
PHONE 2: ® STATE:[]

ADDR 1. D — 18 3 —
ACCT #: IIIorp #:9 007 @

| okav| [appLy | [save | [unoo | | Here | | peeTe|[epir |

SELECT IEEGWSE ||EEEGES I

STUFFTHATHAPPENS.COM BY ERIC BURKE

\

~ Fraunhofer

IESE

The Localize Changes Strategy

Strategy ID Localize Changes

= Reduce number of modules directly affected by changes
= Tactics to implement the strategy
= Single point of reference

Purpose = Abstract common services

= Maintain semantic coherence

= Limit possible options

= Anticipate expected changes (especially in product lines)
Advantages = Cost reo_luctlon for implementing changes

= System is more understandable
Drawbacks . leflcul’_cy for determining “right” place of components for
semantic coherence

\

~ Fraunhofer

IESE

The Prevent Ripple Effects Strategy

Strategy ID Prevent Ripple Effects

Reduce number of modules indirectly affected by changes
Tactics to implement the strategy
= Maintain Interfaces
Hide Information
Open/Closed
Restrict Communication Paths
Use an Intermediary

Purpose

Separation of interface and implementation
Advantages = More structured system
More stable system

Drawbacks Difficulty of defining interfaces in advance

... more about strategies and tactics in Software Architecture in Practice

\

~ Fraunhofer
IESE

Maintainability Styles and patterns

Layered, Microkernel, Pipes & Filters, Event bus

Strategy, Template, Chain of responsibilities, Adapter, Facade

SNY311vd

© Fraunhofer IESE % FraunhOfer
IESE

\

The Layered Style

B Problem/Context

System is decomposed into
components

Components are defined at different
abstraction levels

Components depend on each other

® Solution

Group components into ordered
layers

Components in a layer may only use
services from the layer below it

Communication over fixed interfaces

cmp Layered_Component /

Layer 3 2]

Component3_1 E Component3_2 E Component3_3 E

N) ~

~N e

Interface 2

Layer 2 2]

Component2_1 E Component2_2 E Component2_3 E

~ A

~ | z

~ IL//
Interface 1

Layer 1 2]

Componentl_1 E Componentl_2 E Componentl_3 E

\

~ Fraunhofer
IESE

The Layered Style: Example AUTOSAR

Services layer iz independent of
microcontroller (MCU) and ECU hardware

ECU abstraction layer and complex drivers are independent of
microcontroller (MCU) and dependent on ECU hardware

Application Layer

Basic
Software
(BSW)
- _ © renesas
Microcontroller abstraction layer
iz dependent on microcontroller (MCLU)

\

© Fraunhofer IESE % Frau nhOfer
IESE

The Layered Style

B Advantages
Reuse of layers
Dependencies are kept local

Exchangeability of layer implementation
(but external behavior must be the same, otherwise potential cascade of

changing behavior)

¥ Drawbacks
Communication overhead
Difficulty to decide on granularity of a layer

\

~ Fraunhofer

IESE

The Layered Style

Pattern ID

Problem/
Context

Solution

Advantages

Drawbacks

Impact on
Safety

Example

Layered

System is decomposed into subtasks
Subtasks are defined at different abstraction levels
Subtasks depend on each other

Group subtasks into ordered layers
Subtasks in a layer may only use services from the layer below it
Communication over fixed interfaces

Reuse of layers
Dependencies are kept local
Exchangeability of layer implementation

Cascade of changing behavior
Communication overhead
Difficulty to decide on granularity of a layer

Improvement of safety in a layer trickles through it dependents.
Difficulty handling mixed criticality when there is a high degree of
dependencies in a layer.

Safety mechanisms, e.g. failure detection/management, tend to crosscut
across the functional layers.

Layering overhead increase latencies and timing uncertainties.

AUTOSAR, TCP/IP

\

~ Fraunhofer
IESE

The Microkernel Style

B Problem/Context

Several applications use same core functionality

Core functionality implementation should be safe and maintainable
Core functionality is expected to remain stable

System should be still modifiable

B Solution

Separate a minimal functional core from Client 1 Client 2
extended services

Microkernel (stable, maintainable)
External services (application specific)

Internal services (platform specific)

Microkernel

\

~ Fraunhofer
IESE

The Microkernel Style Example: PikeOS

Application ‘ Application ‘
|

7
PikeOS Base
Services

{

PikeOS Microkernel

Architecture Specific

Package

Platform Specific

Package

Hardware Platform

\

~ Fraunhofer

IESE

The Microkernel Style

B Advantages
Maintainable / modular
Ease of adding / removing services

Separation of policy and mechanisms

® Drawbacks

Performance decreases (compared to monolithic system)

Complexity of design and implementation increase

\

~ Fraunhofer
IESE

The Microkernel Style

Pattern ID

Problem/
Context

Solution

Advantages

Drawbacks

Impact on
Safety

Example

Microkernel

= Several applications use same core functionality

= Core functionality implementation: safe and maintainable
= Core functionality is expected to remain stable

= System should be still modifiable

Separate a minimal functional core from extended functionality and
customer-specific parts

* Maintainable / modular
» Ease of adding / removing services
» Separation of policy and mechanisms

» Performance decreases (compared to monolithic system)
» Complexity of design and implementation increase

= Minimum code base eases qualification.

= Reuse of certified kernels.

» Expand upon infrastructural safety mechanisms (e.g. safety kernel).
= Common cause of failures / single point of failure of kernel.

PikeOS, EB tresos Safety OS, Linux Kernel,...

\

~ Fraunhofer
IESE

The Event-Bus Style

B Problem/Context

Distributed system where many components communicate

Connections between each communicating component not feasible/ desirable

¥ Solution
Components asynchronously emit and receive events over event busses

Components communicate with the event-bus, not directly with each other

cmp Component Model /
Componentl E Component2 E Component3 E
1 —1 —1
L LI L
Event Bus E

\

~ Fraunhofer
IESE

The Event-Bus Style Example: Android

type = device moved
toarea = Auditorium
device = IMEI4217
user = Fred
technology = BT

Browser

WEB App

BT Location
Converter

BT
Adapter

BT Tracking
System

Y
b

type = device moved
tonode = A5005017
. technology = BT

Other services, like

Device/User Mapper,
Interface/Device Mapper

WLAN Location

Converter
"

WLAN
Adapter
\ " 4
WLAN Tracking
System
——————

From http://www.itu.dk/~panic/projects/SeamlessTracking.html

\

~ Fraunhofer

IESE

The Event-Bus Style

B Advantages

Easy to add new components to the system

B Drawbacks
No guarantee that a message arrives at the destination

Message delay possible

\

~ Fraunhofer
IESE

The Event-Bus Style

Pattern ID

Problem

Solution
Advantages

Drawbacks

Impact on
Safety

Example

Event-Bus

»= Distributed system where many components communicate
= Connections between each communicating component not feasible

= Components asynchronously emit and receive events over event busses
= Components communicate with the event-bus, not with each other

» Easy to add new components to the system

* No guarantee that a message arrives at the destination
» Message delay possible

» Entry point for hooking safety mechanisms to failure events
= Separates failure detection from failure recovery.

= Manage redundancies using activation/deactivation events.

= Dynamic execution complicates analysis.

= CCF/SPF of the bus.

Satellite constellation communication, Event Bus in android

\

~ Fraunhofer

IESE

Styles and patterns

Strategy, Template, Chain of responsibilities, ...

SNY311vd

© Fraunhofer IESE % FraunhOfer
IESE

\

The Strate

B Problem

gy Pattern

Different variants of an algorithm are needed

Selection of variant depends on the context

B Solution

Define an interface for a family of algorithms to make them interchangeable

class Strategy /

Context

+ Context(Strategy)
+ Contextinterface() :void

-strategy

«interface»
Strategy

+ Algorithminterface() :void

[

ConcreteStrategyA

ConcreteStrategyB

ConcreteStrategyC

+ AlgorithmInterface() :void

+ AlgorithmInterface() :void

+ AlgorithmInterface() :void

\

~ Fraunhofer

IESE

The Strategy Pattern Example: Sorting Algorithm

class Strategy2 /
Application «interface»
-strategy H H
+ Application(SortingAlgorithm) void [SortingAlgoritig
+ Contextinterface() :void + Algorithminterface() :void
Bubblesort Quicksort
+ AlgorithmInterface() :void + AlgorithmInterface() :void
B Bubble Sort: (-) slower (+) no additional memory
B Quick Sort: (+) faster (-) additional memory

B Compile time instantiation: depending on system properties

B Runtime instantiation: depending on currently available memory

\

~ Fraunhofer
IESE

The Strategy Pattern

B Advantages

Strategies can provide different implementations of the same behavior
with a clean interface

Client can choose among implementations with different time and space trade-
offs

Strategy eliminates conditional statements that are hard to maintain

Strategies can be selected at runtime

B Drawbacks

Client code must be aware of different strategies

Strategies should implement same behavior, otherwise functional outcome
depends on instantiation and the overall behavior is hard to predict

Communication overhead

\

~ Fraunhofer
IESE

The Strategy Pattern

Pattern ID

Problem

Solution

Advantages

Drawbacks

Impact on
Safety

Example

Strategy

Different variants of an algorithm are needed
Selection of variant depends on the context

Define an interface for a family of algorithms to make them
interchangeable

Strategies can provide different implementations of the same behavior
with a clean interface

Client can choose among implementations with different time and space
trade-offs

Strategy eliminates conditional statements that are hard to maintain
Strategies can be selected at runtime

Client code must be aware of different strategies

Strategies should implement same behavior, otherwise functional
outcome depends on instantiation

Communication overhead

Entry point for expressing (safe) mode-dependent algorithms as different
strategies.

Eases qualification by facilitating a per-strategy (e.g. per-mode) safety
analysis.

Dynamic execution binding complicates analysis.

Selecting sorting functions based on free memory availability

\

~ Fraunhofer
IESE

The Template Method Pattern

B Problem

Different variants of an algorithm are needed

Variants differ only in small steps

B Solution

Define a skeleton of an algorithm in a function, deferring some steps to other

functions that may vary

class Template-Method /

AbstractClass

+ PrimitiveOperationl() :void
PrimitiveOperation2() :void
+ TemplateMethod() :void

+

ConcreteClass

RN _ | PrimitiveOperation1()

PrimitiveOperation2()

+ PrimitiveOperation1() :void
PrimitiveOperation2() :void
+ TemplateMethod() :void

+

\

~ Fraunhofer
IESE

The Template Method Pattern Example: Sorting

class Template-Method_Instance /

SortingAlgorithm

+ Comp(int, int) :Boolean
if Comp(vi,v2) [~~7|+ Sort() :void

4 %
/ AN
/ N\
/ N\
/ AN
Sort In Descending Order Sort In Ascending Order
return (v1<v2) ﬁ+ Comp(int, int) :Boolean + Comp(int, int) :Boolean| - -|return (v1>v2)j
+ Sort() :void + Sort() :void

Difference to Strategy
in scope: strategy replaces whole algorithm, template-method only parts
intention: strategy intended to select algorithm, template-method to build

Concrete strategies may be implemented using template-method !

\

~ Fraunhofer
IESE

The Template Method Pattern

B Advantages
Template Method eliminates conditional statements that are hard to maintain

Supports Code Reuse

B Drawbacks

Must be well documented, otherwise hard to understand

\

~ Fraunhofer
IESE

The Template Method Pattern

Pattern ID Template Method
= Different variants of an algorithm are needed
Problem : : :
= Variants differ only in small steps
. Define a skeleton of an algorithm in a function, deferring some steps to
Solution)
other functions that may vary
» Template method eliminates conditional statements that are hard to
Advantages maintain
= Supports code reuse
Drawbacks Must be well documented, otherwise hard to understand
Impact on n.a
Safety N
Example Sorting in descending/ascending order
EG

\

~ Fraunhofer
IESE

The Chain of Responsibility Pattern

B Problem

A request (like error handling) is issued but it is unclear at which part of the
system the request should be handled

B Solution

Request are passed along a chain of possible handlers until one handles it

Request | . Request_| ,Request | ,Request
Issuer1 Handler1 Handler2 Handler3
Request
Issuer2

\

~ Fraunhofer
IESE

° » Request Communication Path

The Chain of Responsibility Pattern Example:
Satellite Fault Management

Safe Mode, Reconfiguration

Alarms

Figure 4: FDIR Hierarchical Breakdown

© Fraunhofer IESE % FraunhOfer
IESE

\

The Chain of Responsibility Pattern

B Advantages

Reduced coupling

Added flexibility for handling requests

B Drawbacks

No guarantee that request is handled if not pre-planned

\

~ Fraunhofer
IESE

The Chain of Responsibility Pattern

Pattern ID Chain of Responsibility

Problem A request (like error handling) is issued but it is unclear at which part of the
system the request should be handled

Solution Request are passed along a chain of possible handlers until one handles it
= Reduced coupling

RN E = Added flexibility for handling requests

Drawbacks No guarantee that request is handled if not pre-planned
» Organizational scheme for managing failures across crosscutting

Impact on abstractions or levels, i.e. classical way for implementing fault

Safety management.
= Dynamic execution binding complicates analysis.

Example Satellite fault management

|40

\

~ Fraunhofer

IESE

Safety

Safety Tactics

Safety
Failure Avoidance Failure Detection Failure Containment
— ™ Simplicity Substitution Timeout Redundancy Recovery Masking Barrier e
Failure Timestamp Failure Avoided
Sanity l l l i or Handled
Checking
Condition
Monitoring ~ Replication Fix The Voting Firewall
Comparison Functional Errors Interlock
Redundancy Rollback
Analytic Degradation
Redundancy Reconfiguration

\ 4

Safety Tactics for Software Architecture Design
W. Wu and T. Kelly

Safety Pattern

Redundancy
Homogeneous Redundancy

Triple Modular Redundancy

Pattern for Error Detection
Monitor-Actuator Pattern
Watchdog

Achieving Quality Attributes

Redundancy
Homogeneous Redundancy

Triple Modular Redundancy

Homogeneous Redundancy Pattern (1/3)

“An obvious approach to solving the problem of things breaking is
to provide multiple copies of that thing.” &r.pouglass

Pattern goal

Improve reliability by offering multiple channels that can operate in sequence or in
parallel.

Homogeneous Redundancy Pattern (2/3)

Poimary ACeiation O nes)

1
I Pt Output
Frocossing TransTormation Processing
Primary Pk ey
Inpan Seror Aciuabor
Achsatsosn
HE Dass Walkdaton i ——

Dala Walidatexn

Atz |8

et
Tans rmaiice =
Sacondary T L |
Inpert Sersod oA redeceasnr Secondary
e transformaton et L e

UTrESIoETNATON

Solution

Improves reliability by addressing random faults (failures) in the system execution.

Drawback

Any systematic fault in one copy of the system is replicated in its clones, thus, not proving, protection
against systematic faults (errors).

Homogeneous Redundancy Pattern (3/3)

Primary
Fleww Sonsar

Pﬂml:r'r
03 Sansor

Backup
02 Sansor

Backup
Flow Sensor

Mairy Ficaw Corirgl Chanrsl
aPrimany Acualion Crannels

Flow Sansor
Diriver

SOOI ST
Rk licn

s e
fransformaton

i

Airpul precessings

O3 Flow Rals

sdala ransformatons

Covirsiliar

=uipUt processings

Gas Flos

Ainpul processings

OF Flhow Rabs

Florm Bansor
Dirivar

r}i”

Esckup Flow Comtrel Channal
shacondary Actustion Chasnals

[T
transtor mation

BUECIRBOT
¥ aeelonra licn

sl procEssings

Gan Flow
Conbtroller

=ciala rarsiormaton s

=inpA processings sdata transiermations el
03 Saraor Primary
Dirtwar Oas Wesar
b vk A
&2 Monibor i PP F——
Muonitgr Parmer oo
i Buil:In Test =pclushon valdabons
L] £ 3 ., 3
.
[Fui®-In Tesd
anctuason validations
02 Woniior Flow
Manilar
il wRldAlcns
0F Serace
Diriwmr
. s daia ansiemations
ainpul proceasings
Baclusp
Ol Minar

Triple Modular Redundancy (1/2)

Pattern goal
Enhance reliability and safety in situations where there is no fail-safe state.
Solution

Odd number of channels operating in parallel, each in effect checking the results of all the others.

The computational results or resulting actuation signals are compared, and if there is a disagreement,
then a “two-out-of-three majority wins” policy is invoked.

Actuatbos Chaenasl 1

Inpui data output
prosaesing traslommation prosseemiog
1

o1 S e

ort e arestomaton
ranskumation

HAuzivation Chamnel 2

Input data sutput
procaaing tr e furmation preceusing ~
1

=R}
B
rarmlcrmation

SRS Artualon
wansEmaton

P eS0T

Actuation Chamnal 31

input dats Cusigaal
procasaing transfeemation procassing
)

BUCCEEROT

Triple Modular Redundancy (2/2)

Teabn Speed Computation Subsystam

Channe 1
whetl sensor data
i | davico driver propmcrssing e~
opnizal whesel _'1: 1
Spoed Sersar

Filiered Daia

. 5
whesl sansor daia
davicn driver

TN SN p— e |7
optical wianl . ,1! ! l" [
Spoed SETvsar

Erging Cortmiler

Fiteredd Daia
Channed 3
mhosl Sansor dala Foalriam Filigr
deviza dilver Prepraceisieg
cptical wianl ll ' l-
sperd SeeEor

Filtered Dol

Drawbacks

High recurring cost because the hardware and software in the channels must be replicated.

Achieving Quality Attributes

Tactics for Error Detection
Monitor-Actuator Pattern
Watchdog

Monitor-Actuator (1/2)

Pattern goal
Improve safety in a system with moderate to low availability requirements at a low cost.
Solution

Redundant channel differs from the primary actuation channel by providing monitoring.

Monitor maintains a watch on the actuation channel looking for an indication that the system should be
commanded into its fail-safe state.

DTS SOr
Irrekrmalon

predeoassor
0.1 franskoomalion ool

Actuntion Chasmal

|* sgnal
. senesr input data outped i
i PrOCas sing ‘transformation processing hl
Asbaation LTSI iy
Duaita Boisrce p
daty integrity
ks
® riaiung
o
Shisdoan
Sat Peint sgnal
Eaiifch
Woritoring Channel
T meonfoned

et
receihcring pre=j
mantar Input O — -
processing

Mshaatsr Maniar
Sansar

Monitor-Actuator (2/2)

Waporiear Aclualicn
Channal
conirod
sunal
frug Closed-Loop Vaporizer HW
— Comcantralion Controlies o I
Bansor DO
Agent Vaponzer HW
Cancendatian I
Seeriior 1
Data Iningrty
Checks
b miedsures
f
—_— SRl
Physician sigral
‘Waporizer Moniboring !
Chars
‘[, Ml
EChalion
Drug
sqqnal
""nm Cantantralion |- 3
Agesi J Sanaor Dl
Agant
Canoantralicn
5 2

Because there is minimal redundancy, the system cannot continue to function when a fault is identified.

Watchdog (1/3)

Pattern goal

Checks that the internal computational processing is proceeding as expected.
Check a computation timebase;

Ensure that computation steps are proceeding in a predefined order.

SUCOIESO
Actusilion Chaninel

transiormation odocossor
[Tty
o ransicimaion i
1 signal
Sanasor Input Data Duripust
* Procoasing > Translarmalicn Prosaasing et
Aciuatian Achaator

Dada Soairca

Elogrity Chaek

EE b F
1
1 i Watchdog

Timebase

Watchdog (2/3)

conim

BSOSO
dAcbantion Channol ransformation e
1 transdormation
1
Sensor Input Diata Ouripisi
Procisiing > Translormaticn Presassing
Aciuation
Dadtn Soance
L L]
Ieilogrity Chack s
L1
Sl
s
1 ’ L
1 i Watchdog
H Timobaso
Solutions

= %

Achaaior

Watches out over processing of another component, ensuring that nothing is obviously wrong.

The Actuator Channel operates independently of the watchdog, often sending a /iveness message to the

watchdog.

Drawback

Because of the minimal coverage of the Watchdog Pattern, it is rarely used alone, but combined with

other tactics.

Watchdog (3/3)

Haart
Voltage
Sonsor

Pacamaler Actumion Chaneel

Paco Chamber

Sengar Inpsil
Processing 3
Integrity Chack

Timsebaso

[t
=qnal
Pacing
Elsttronics
Shuldaown
Aignal
Heciorooal
Ittt Signal
[k
msdaled)
Stariup skgnal

Backup HW
Pacing Enging

Wrap Up

Architecture Tactics, Styles and Patterns:
Maintainability

Layered, Microkernel, Event bus, ...

Strategy, Template, Chain of responsibilities, Adapter, Facade

LOCALIZE CHANGES PREVENT RIPPLE EFFECT

Abstract Common Services Hide Information
Maintain Semantic Coherence Open/Closed

Anticipate Expected Changes Restrict Communication Paths/ Use an Intermediary
Limit Possible Options

SNY311vd

SOI1LOV1L

Safety Tactics

Safety
Failure Avoidance Failure Detection Failure Containment
— ™ Simplicity Substitution Timeout Redundancy Recovery Masking Barrier e
Failure Timestamp Failure Avoided
Sanity l l l i or Handled
Checking
Condition
Monitoring ~ Replication Fix The Voting Firewall
Comparison Functional Errors Interlock
Redundancy Rollback
Analytic Degradation
Redundancy Reconfiguration

\ 4

Safety Tactics for Software Architecture Design
W. Wu and T. Kelly

Tactics for other Quality Attributes

Security Tactics

System Detects,

Attack > Security -> Resists, or Recovers
from Attacks
Resisting Detecting Recovering
Attacks Attacks from an Attack
Authenticate Users Intrusion Restoration Identification
Authorize Users Detection

Maintain Data
Confidentiality
Maintain Integrity
Limit Exposure
Limit Access

l l

See _ _
Availability Audit Trail

\

~ Fraunhofer
IESE

Availability Tactics

Fault Detection

Ping/Echo

Heartbeat

Exception

Availability
Eecover}c/_- Recovery-
reparation Reintroduction
and Repair
Voting Shadow
Active State
Redundancy Resynchronization
Passive Rollback
Redundancy
Spare

Prevention

l

Removal from
Service

Transactions

Process
Monitor

\

~ Fraunhofer

IESE

Performance Tactics

Response
Events Arrive > Performance > Generated within
Time Constraints

Resource Resource Resource
Demand Management Arbitration
C Increfste: Introduce Scheduling
omputation Concurrency Police
Efficiency ‘
Reduce :
Computational MCL:)IEEI:! System Model
Overhead ‘
Man‘a o Increase
9 Available Task Model
Event Rate
Resources

\
Control Frequency of Sampling

\

~ Fraunhofer

IESE

Testability Tactics

Completion
of an
Increment

Faults

> Testability

N

Detected

Manage Internal
input/output Monitoring
Record/Playback Built-in

Monitors

Separate Interface
from Implementation

Specialized Access
Routines/Interfaces

\

~ Fraunhofer
IESE

© Fraunhofer IESE

N\

	Slide Number 1
	Slide Number 2
	Literature for Software Architecture Pattern, Styles and Tactics
	Maintainability
	Architecture Tactics, Styles and Patterns:�Maintainability
	Goal Definition�
	Maintainability Strategies
	The Localize Changes Strategy
	The Localize Changes Strategy
	The Localize Changes Strategy
	Slide Number 12
	The Localize Changes Strategy
	The Prevent Ripple Effects Strategy
	Maintainability Styles and patterns
	Slide Number 16
	The Layered Style: Example AUTOSAR
	The Layered Style�
	The Layered Style
	Slide Number 20
	Slide Number 21
	Slide Number 22
	The Microkernel Style
	The Event-Bus Style�
	The Event-Bus Style Example: Android
	The Event-Bus Style
	The Event-Bus Style
	Styles and patterns
	The Strategy Pattern
	The Strategy Pattern Example: Sorting Algorithm
	Slide Number 31
	The Strategy Pattern
	The Template Method Pattern
	The Template Method Pattern Example: Sorting
	The Template Method Pattern
	The Template Method Pattern
	The Chain of Responsibility Pattern�
	The Chain of Responsibility Pattern Example:�Satellite Fault Management��
	The Chain of Responsibility Pattern�
	The Chain of Responsibility Pattern
	Safety
	Safety Tactics
	Safety Pattern
	Achieving Quality Attributes
	Homogeneous Redundancy Pattern (1/3)
	Homogeneous Redundancy Pattern (2/3)
	Homogeneous Redundancy Pattern (3/3)
	Triple Modular Redundancy (1/2)
	Triple Modular Redundancy (2/2)
	Achieving Quality Attributes
	Monitor-Actuator (1/2)
	Monitor-Actuator (2/2)
	Watchdog (1/3)
	Watchdog (2/3)
	Watchdog (3/3)
	Wrap Up
	Architecture Tactics, Styles and Patterns:�Maintainability
	Safety Tactics
	Tactics for other Quality Attributes
	Security Tactics
	Availability Tactics
	Performance Tactics
	Testability Tactics
	Usability Tactics
	Slide Number 65

