
SAA 06 – Architecture Evaluation

TU Kaisers lautern, SS2018
Lecture “Software and System Architecture (SSA)”

Dominik Rost
dominik.rost@iese.fraunhofer.de

© Fraunhofer IESE

2

Exercise

Discussion

 RECAP LAST LECTURE

 Explain the contents of the last lecture

 What were the topics?

 Why do we need it?

 How does it work?

 How is it created, used, and/or evolved?

Example Architecture Evaluation

© Fraunhofer IESE

4

Example

Architecture Evaluation Example

 The situation before the audit

 Customer contracted a solution provider to deliver a new business information
system to enter new markets with improved qualities and unique features

 The solution provider designed an architecture of the business information
system but outsourced implementation and testing

 After approx. three-years of development

 Customer made high investments into new system

 First prototypes of the final product were assessed as not satisfying

 Solution provider already delivered behind schedule

 Discussion with the solution provider seemed to be fruitful

 The solution provider submitted an offer to finalize the system with new
promises

© Fraunhofer IESE

5

Example

Architecture Evaluation Example

 The questions – trigger of the audit

 Is it worth to continue investing in this situation?

 Can we trust the promises?

 Will the prototypes mature over time?

 Can our necessities be met with respect to functionality and quality?

 Architecture evaluation audit

© Fraunhofer IESE

6

Example

Architecture Evaluation Example – Actions Taken

 After the audit: customer rejected the new offer made by the solution
provider

 Project was canceled due to architecture evaluation results (the previous
example was just one of many cases)

 Confidence in architecture was too low

 Distance investigation revealed gap between the realized system level and the
intended solution on architecture level

 Correction effort was estimated higher than the new offer

 Impact

 Product could not be delivered

 High investments were made in vain

 Costs for audit less than 1% of project budget

© Fraunhofer IESE

7

Example

Architecture Evaluation Example – Synopsis

 Architecture is the conceptual tool to cope with complex systems

 Architecture evaluation

 Provides valuable input to decision making

 Can be applied with limited effort

 Can produce results quickly

 In this case, architecture evaluation…

 … should have been applied earlier

 … might have saved the investment

 … should have been repeated regularly

 … might have lead to an improved architecture and compliant
implementation

© Fraunhofer IESE

8

Foundations

Typical Problems found in Architecture Evaluations

Architectures not
adequate for
requirements

(any more)

Mismatch of
architectures of
systems to be

integrated

No connection
between

architecture and
implementation

Mismatch between
architecture and
organization /

processes

Architecture Evaluation Goals

© Fraunhofer IESE

10

Foundations

Mission of Architecture Evaluation

 The Miss ion is Mitigating (Technical) Risks

 It is not about good or bad, it’s about adequate or not

 It is not about “state-of-the-art” or not, it’s about adequate or not

 Adequacy is always checked relative to concrete concerns and (future) requirements

 The Miss ion is to Determine the Quality of

 The system (system in use, operation, change)

 (Auxiliary) artifacts created in engineering (documentation, models, code, …)

 Evaluation of software architecture aims at determining

 How well-known are the stakeholder concerns

 How well-suited for the purpose is the architecture of a system

 How well-documented is the architecture solution

 How well-realized the architectural solution by the implementation

 How well-written is the implementation

 With respect to concrete stakeholders concerns

© Fraunhofer IESE

11

Well-grounded
business
decis ions

Which sub-contractor is best for me?

Can we provide multiple
customizations?

What do paradigms like SOA or Cloud
mean to me?

Can we realize next generation
features in our product?

© Fraunhofer IESE

12

Controlling
product
quality

Does my system fulfill the
performance requirements?

Is my system flexible
enough for future
changes?

How well does my system support
parallel development?

What are the operation costs of
my system?

© Fraunhofer IESE

13

Technology
decis ions

Which technology fulfills my
needs best?

What is the impact of the
adoption of this
technology?

What benefits can a particular
technology offer?

How can legacy technologies be
replaced?

© Fraunhofer IESE

14

Managing
evolution &
migration

How can I deliver constantly
during evolution?

How to maintain my
existing products?

How to migrate to a new technology
platform?

How do I develop my next
generation platform?

© Fraunhofer IESE

15

Foundations

Initiators of Architecture Evaluation

Initiator in same
company

Initiator in other
company

Top management

Development
management

Method support
group

Development
team

Current customer

Potential
customer

Disappointed
customer

Cautious
customer

© Fraunhofer IESE

16

Foundations

Benefits of Architecture Evaluation

 Improvements

 Improved software architectures

 Improved architecture documentation

 Improved implementations of architectural solutions

 Risk mitigations

 Early detection of problems

 Clarified quality attribute requirements

 Communication

 Improved understanding of design decisions

 Higher architecture awareness in the organization

 Sustainability

 Traceability of architecture solutions over time

 Higher or full compliance in implementations

 Competence

 Improved architecture competence of involved stakeholders

Architecture Evaluation

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

19

Foundations

Approach of Evaluation Projects

Scope
Evaluation
Context

Set up
Evaluation

Project

Select Evaluators

Select Evaluation
Techniques

Estimate Effort

Involve
Stakeholders

Establish Project

Conduct
Evaluation

Package
Evaluation

Results

Interpret Results

Present Results

Conduct DIC

Conduct SAC

Conduct DQC

Conduct ACC

Conduct CQC

Define
Evaluation Goals

Shape Evaluation
Context

© Fraunhofer IESE

20

Foundations

Levels of Confidence

 The higher the confidence, …

 … the lower the risk of having made a wrong design decision

 … the higher the effort to invest

 … the lower the number of concerns that can be checked

Artifact
Quality

System
Quality

Believed

Believed

Inspected Measured

Predicted Probed Tested

© Fraunhofer IESE

21

Foundations

Interpretation of Evaluation Results

Rating

Severity of findings Legend

C
ri

ti
ca

l

H
a
rm

fu
l

M
in

o
r

H
a
rm

le
ss

 /

A
d

va
n

ta
g

e
o

u
s

N/A

B
a

la
n

ce
 o

f
fi

n
d

in
g

s Mainly negative findings NO

Negative findings
predominate

PARTIAL

Positive findings
predominate

LARGE

Mainly positive findings FULL

© Fraunhofer IESE

22

Foundations

Architecture

Architecture
Documentation

Architecture
Compliance

Code Quality

Evaluated System

Architecture
Requirements

Is the architecture adequate for the requirements?

Are the architecture requirements clear?

Is the architecture documentation adequate?

Does the code have good overall quality?

DIC

SAC

DQC

ACC

CQC

Is the code consistent with the architecture as it was planned?

© Fraunhofer IESE

23

Foundations

Architecture Evaluation Limitations

 Architecture can only be evaluated indirectly

 Based on the input of stakeholders

 Based on available architecture documentation

 Architecture evaluation requires cooperation

 Open and cooperative climate for audits

 Common goal to improve

 Absolute architecture evaluation typically not poss ible

 Exact measurement is not always possible

 Trade offs between competing qualities avoid unique, objective winners

© Fraunhofer IESE

24

Foundations

Architecture Evaluation Limitations

 Architecture evaluation

 Cannot guarantee quality

 Component design and implementation also impact system qualities

 Examples for negative impact on quality at implementation level

 Performance: inadequate algorithms

 Maintainability: low code quality, unreadable code, …

RATE: Driver Integrity Check

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

27

Foundations

• Requirements documentation
• Architecture documents

(if available)

• Identify and involve relevant stakeholders
• Elicit and consolidate stakeholder concerns
• Find areas of interests, recurring items, hot spots,

disagreements, and potential conflicts
• Merge, unify and align terminology used
• Document all architecture drivers
• Check for common agreement and approval
• Rate the integrity of the concerns
• Package the results

Architecture Drivers

Findings (deviations,
inconsistencies, ambiguities) in
and consolidation of architecture
drivers (business goals,
constraints, quality attributes, key
functional requirements)

Severity and balance of findings

• Predicted
• Probed

• Architect
• Peers
• External auditor

• Documentation tools

• All stakeholders of the system
• Architects of system under evaluation (optional)

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Driver Integrity Check (DIC)

It serves to check the integrity of
architecture drivers manifesting
the stakeholders’ concerns.

© Fraunhofer IESE

28

Foundations

Architecture Driver Template

Categorization Responsibilities

Driver Name Supporter

Driver ID Sponsor

Status Author

Priority Inspector

Description Quantification

Environment

Stimulus

Response

Use to document drivers
elicited during Driver Integrity Check

© Fraunhofer IESE

29

Foundations

Rating of Driver Integrity

 N/A means that the driver integrity of the architecture driver has not
(yet) been checked.

 NO Driver Integrity means there is strong disagreement among the
stakeholders (conflicting concerns or priorities), or between
stakeholders’ concerns and the architecture driver specified by the
assessor.

 PARTIAL Driver Integrity means that the architecture driver
consolidates the stakeholders’ concerns to some extent, but that parts of
the driver need further elaboration before getting approval from the
stakeholders.

 LARGE Driver Integrity means that the stakeholders have no major
objections and approve the architecture driver in principle; some details
may require further refinement or elaboration.

 FULL Driver Integrity means there is shared agreement among
stakeholders and assessors about the architecture driver and the driver
has been approved by the stakeholders.

© Fraunhofer IESE

30

Foundations

Integrity Levels of Driver Integrity Check

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to number of drivers)

Self-Controlled

Reviewed

Reviewed
3rd Party

Estimated

Prototyped

Inspected

Probed

RATE: Solution Adequacy Check

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

33

Foundations

• Architecture drivers
• Architecture documentation

• Overview explanation of the architecture
• For each architecture driver

• Reconstruct and discuss detailed solution
• Document design decisions, risks, tradeoffs
• Rate adequacy of the solutions
• If necessary, increase confidence with other

analyses
• Guidelines

• Challenge the architect: ask for details
• Ask about the “why?”
• Use your experiences from other systems
• Explore boundary areas

Architecture decisions
Architecture driver solutions
Architecture diagrams

Findings on adequacy of
architecture decisions to fulfill the
architecture drivers (explicit
rationales, risks, tradeoffs,
assumptions)

Severity and balance of findings

• Predicted
• Probed
• Tested

• Architect
• Peers
• External auditor

• Simulation tools
• Documentation tools

• Architects of system under evaluation
• Further stakeholders of system (optional)

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Solution Adequacy Check
(SAC)

It serves to check whether the
architecture drivers of a system
are adequately addressed in its
architecture.

© Fraunhofer IESE

34

Foundations

Approach for Solution Adequacy Check

Presentation of
Architecture

Overview

Evaluation of
Driver X

Rating
Confidence

in Result

Rating Driver
Fulfillment

Architecture
Driver

Architecture
Driver

Architecture
Driver

Architecture
Driver

Architecture
Driver

Architecture
Decision

Architecture
Driver

Architecture
Driver
Driver

Solution

Architecture
Driver

Architecture
Driver

Architecture
Diagram

© Fraunhofer IESE

35

Foundations

Categorization Responsibilities

Driver ID Promotor

Driver Name Sponsor

Status Author

Priority Inspector

Description Quantification

Environment

Stimulus

Response

Decision Name

Decision ID

Pros Cons & Risks

Assumptions Trade-offs

Manifestation
Links

Architecture Drivers (Input) Design Decisions (Output)

1:1

n:m

Driver Solutions (Output)

Driver Name

Driver ID

Related Decisions

Steps

Pros Cons & Risks

Assumptions Trade-offs

User Interface

Services

Domain Logic

Data Management

Architecture Diagrams (Output)

n:m

INPUT OUTPUT

OUTPUT OUTPUT

© Fraunhofer IESE

36

Foundations

Questioning Guidelines for
Discussing Adequacy of Solution Concepts

 Ask for the solution concepts addressing the architecture driver

 Challenge the architects

 Consider all aspects covered in the ADF

 Use your experience from previous systems

 Identify risks: information that is not available

 Explore the boundary values of the architecture driver and solution
concepts (limitations & assumptions)

 Explore potential tradeoffs with other quality attributes/architecture
drivers

© Fraunhofer IESE

37

Foundations

Confidence Levels of Solution Adequacy Check

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to number of drivers and solution concepts)

Self-Controlled

Tested in Lab

Reviewed

Reviewed
3rd Party

Tested in Field

Simulated

Prototyped

Predicted

Tested

Probed

© Fraunhofer IESE

38

Foundations

Rating of Solution Adequacy

 N/A means that the solution of the architecture driver has not (yet)
been checked. It can also mean that the check was not possible as the
architecture driver was stated but not agreed upon.

 NO Solution Adequacy means there are major weaknesses in the
solution or no solution may even be provided for the architecture driver.

 PARTIAL Solution Adequacy means that the architecture driver is
addressed but there are still weaknesses and risks that require further
clarification or architectural rework.

 LARGE Solution Adequacy means that the architecture driver is
generally well addressed but with minor weaknesses or risks.

 FULL Solution Adequacy means there is confidence that the
architecture driver is well addressed by the architecture decisions.

RATE: Documentation Quality Check

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

41

Foundations

Documentation Quality Check

• Documentation purposes
• Architecture documents,

models, wikis, sketches, API
documentation

• Audience

• Manual inspections
• Walkthroughs
• Tool-based measurement

Findings on adequacy of
documentation and adherence to
best practices

Severity and balance of findings

• Inspected
• Measured

• Architect
• Peers
• External auditor

• Best practice and style
checkers

• (Audience of documentation)

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Documentation Quality
Check (DQC)

Serves to check the
documentation of solution
concepts and the adherence to
documentation best practices.

© Fraunhofer IESE

42

Foundations

Confidence Levels of Documentation Quality Check

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to amount of documentation)

Self-Controlled

Reviewed

Reviewed
3rd Party

Tool-based
Best Practice

Check

InspectedMeasured

© Fraunhofer IESE

43

Foundations

Architecture Documentation

Creation
Maintenance

Documentation

Structure

Representation

Content

Usage

© Fraunhofer IESE

44

Foundations

General Properties of

 Representation

 Readability

 Understandability

 Memorability

 Uniformity

 Consistency (Internal and External
with other Documents)

 Compactness

 Completeness

 Correctness

 Suitability for reader

 Look and Feel (Usability)

 …

 Structure

 Structuredness

 Simplicity

 Navigation

 Consistency

 Redundancy-freeness

 Retrievability

 Traceability

 Suitability for reader

 …

© Fraunhofer IESE

45

Foundations

Rating of Documentation Quality

 N/A means that the documentation quality for a criterion has not (yet)
been checked.

 NO Documentation Quality indicates that major problems with the
architecture documentation have been found. Significant amounts of
effort and strong rework of the documentation concept are necessary.

 PARTIAL Documentation Quality means that a substantial number of
deficiencies has been found in the documentation. These deficiencies
endanger the usefulness of the documentation and require significant
improvement.

 LARGE Documentation Quality means that only manageable
deficiencies have been identified. The existing anomalies should be
addressed explicitly and the estimated effort for fixing these fits into the
next evolution cycle.

 FULL Documentation Quality means no or only few weaknesses were
found in the documentation. Overall, the documentation is well suited
for its purposes and follows documentation best practices.

RATE: Architecture Compliance Check

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

48

Foundations

Architecture Compliance

 Architectures have to be implemented as they were planned. Otherwise,
their value disappears

 Implemented system must conform to the specified architecture

 Traceability between architecture and source code is ensured

Implemented structurePlanned structure

© Fraunhofer IESE

49

Foundations

Industry Implementations Lack Structural Compliance

Just ONE subsystem (out of 20) of a real system

© Fraunhofer IESE

50

Foundations

Architecture Compliance Checking

• Architecture documents,
models, wikis, sketches, API
documentation

• Source code
• (Running system)

• Identification of solution concepts to be checked for
compliance

• Extraction of relevant facts from the code / running
system

• Mapping of extracted facts to solution concepts
• Comparison of implemented architecture (extracted

facts) and intended architecture (solution concepts)
• Interpretation of compliance checking results

Findings on the compliance of the
implementation with respect to
the intended architecture
• Convergences
• Divergences (violation)
• Absences (violation)

Severity and balance of findings

• Inspected
• Measured

• Architect
• Peers
• External auditor

• Compliance checking
tools

• Architects and developers of the
system under evaluation

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Architecture Compliance
Check (ACC)

Serves to check the manifestation
of solution concepts in source
code and/or in executables of the
system.

© Fraunhofer IESE

51

Foundations

Typical Concepts to Check for Structural Compliance

User Interface

Services

Domain Logic

Data Management

F
ra

m
e

w
o

rk

A
p

p
li

ca
ti

o
n

 C
o

re

L
o

g
is

ti
cs

G
e

o

S
h

o
p

p
in

g

C
o

m
m

u
n

ic
a

ti
o

n

S
o

ci
a

l

P
a

rt
ic

ip
a

n
ts

C
u

st
o

m
iz

a
ti

o
n

s

Service

Interfaces

Logic

Data Objects

© Fraunhofer IESE

52

Foundations

Comparison and Visualization of Results

System artifacts
• Implementation (code)
• Execution (runtime) traces

Experts
• Documentation
• Reverse engineering
• Reconstruction

Compliance checking tool

Result report

Mapping

© Fraunhofer IESE

53

Foundations

Compliance Checking - Structure

Component

Convergence

Divergence

Absence

Plan Reality Comparison
(compliance checking)

© Fraunhofer IESE

54

Foundations

Compliance Checking - Tools

 Axivion Bauhaus

 CAST

 jDepend

 jRMTool

 Klocwork Insight

 Lattix

 Hello2morrow SonarJ

 Hello2morrow Sotograph

 Semmle .QL

 Structure101

 Fraunhofer SAVE

© Fraunhofer IESE

55

Foundations

Rating of Architecture Compliance

 N/A means that the architecture compliance for a solution concept has not (yet) been
checked.

 NO Architecture Compliance

 systemic misunderstanding that has been manifested in the code

 affects the fulfillment of architecture drivers and requires great dedicated effort for correction.

 no counterparts found on code level for architecture solution concepts

 PARTIAL Architecture Compliance

 large gap between the solution concept and the source code

 does not break the architecture but the number of violations is drastically high

 estimated effort for fixing these violations does not fit into the next evolution cycle; rather, fixing the
violations requires dedicated effort for redesigning, restructuring, and refactoring

 LARGE Architecture Compliance

 small or medium gap between the solution concept and the source code

 does not break the architecture but has a significant adverse impact on some architecture drivers

 violations should be addressed explicitly and the estimated effort for fixing does fit into the next
evolution cycle.

 FULL Architecture Compliance

 no or almost no violations in the source code (short distance to the architectural solution concepts)

 having no violations at all is unrealistic for non-trivial software systems; there will always be exceptions
for good reasons (technical limitations, optimizations of quality attributes, etc.). It is rather important to
have a low number of violations (e.g., less than one percent violations of all dependencies) that are
known explicitly and revisited regularly to keep them under control.

RATE: Code Quality Assessment

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

58

Foundations

Code Quality Check

• Source code
• (Build scripts)

• Identification of goals for checks
• Setup and configuration of code quality checks
• Measurement of the selected metrics and checks
• Interpretation of code quality results

Findings on quality of the source
code
• Best practice violations
• Code clones
• Quality warnings

(maintainability, security, …)
• Code metrics
• …

Severity and balance of findings

• Inspected
• Measured

• Architect /
Quality Engineer

• Peers
• External auditor

Code quality tools (style
checker, clone detection,
quality warning checker,
…)

• Developers of the
system under evaluation

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Code Quality Check (CQC)

Serves to check the
implementation for the
adherence to coding best
practices and quality models.

© Fraunhofer IESE

59

Foundations

Software Measurement and Metrics

 Multiple metrics exist

 Design

 Coupling

 Cohesion

 Inheritance depth

 …

 Implementation

 Code style

 McCabe

 Maintainability index

 …

 Testing

 Test success

 Code coverage

 …

 …

© Fraunhofer IESE

60

Foundations

Example: Measurement Tools

 Weighted aggregation of metrics
of all areas

 Code quality (architecture, design)

 Test

 Result

 One indicator for the whole system

 What does that indicate?

 Best practice measurement

 Interpretation is difficult!

© Fraunhofer IESE

61

Foundations

Rating of Code Quality

 N/A means that the code quality for a criterion has not (yet) been
checked.

 NO Code Quality indicates major parts of the code base exceed the
thresholds that have been defined for the criterion at hand.

 PARTIAL Code Quality means for some parts of the source code, the
thresholds defined and the impact of the anomalies is considered
harmful. The estimated effort for fixing these anomalies does not fit
into the next evolution cycle; rather, dedicated effort for refactoring is
required to fix the anomalies.

 LARGE Code Quality means that only limited anomalies were found
with respect to the defined criterion. The existing anomalies should be
addressed explicitly and the estimated effort for fixing them does fit
into the next evolution cycle.

 FULL Code Quality means there are no or only few anomalies (e.g.,
condoned exceptions).

RATE: Packaging and Presentation

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

© Fraunhofer IESE

64

Example

Packaged Example Results from Different Projects

Architecture

Architecture
Compliance

Architecture
Documentation

Code Quality

Example 3
System 1

Architecture
Requirements

N/A

N/A

DIC

SAC

ACC

DQC

CQC

Example 3
System 2

N/A

N/A

Example 1
System

N/A

N/A

Example 2
System

Example 4
System

N/A

N/A

N/A

N/A

© Fraunhofer IESE

65

Example

Results for Different Quality Attributes

F : Future Architecture Driver

Accuracy

Availability

Businessgoal

Consistency

Flexibility

Interoperability

Monitoring

Operability

Performance

Reliability

Updatability

User Experience

F

F

F

F

F F F F

0

2

4

6

8

10

12

14

16

18

Realized Future

N
u

m
b

e
r

o
f

A
rc

h
it

e
ct

u
re

 D
ri

ve
rs

Status of Driver Realization

Audits and Application

© Fraunhofer IESE

67

Factors Driving Effort for Architecture Evaluation

Need for
fast results

Overall
Effort

Number of
stakeholders

Organizational
complexity

System size
and complexity

Evaluation
questions

Required
confidence

Criticality of
situation

© Fraunhofer IESE

68

Findings: Requirements that are Often Neglected

Runtime
Quality Attributes

Devtime
Quality Attributes

Operation
Quality Attributes

Typically known

Partially missing
quantification

Often not
explicitly known

Often hard to
quantify

Typically not
explicitly known

Often not
addressed well

Often not
addressed well

Often addressed
well

Partially missing
quantification

© Fraunhofer IESE

69

Findings: Aspects that are „Over-Elaborated“

Technical Architecture Business Architecture

Specification of general
architectural styles

Selection of technologies

Definition of concrete
components or guidelines

how to define them

Mapping of concrete
functionality to

technologies

Over-Elaborated Neglected

OSGi
ESB

…

© Fraunhofer IESE

70

Findings: Architecture Documentation

Architectural
Requirements

Architecture

Implementation

Often not
available

Often not
available

Often very good
knowledge

Often very good
knowledge

 Missing uniformity, lack of compliance,
quality problems

D. Rost, M. Naab: Architecture Documentation
for Developers: A Survey, ECSA 2013

R
e
co

n
stru

ctio
n

 is e
sse

n
tia

l a
s

b
a
sis fo

r e
va

lu
a
tio

n

© Fraunhofer IESE

71

Interpretation of Evaluation Results

Architecture
Evaluation often

not fully objective
and quantitative

No standard
interpretation

possible

Interpretation has to
consider evaluation
questions + many

context factors

Even quantitative
data (e.g. number of

incompliant
relationships) often

hard to interpret

Representation of
results for

management is
challenging
( actions?)

Tool-based reverse
engineering often
leads to nice but

useless visualizations

Stakeholders partially
try to influence the
interpretation for

their goals

Wrap Up

Architecture Foundations

Architecture Views

Architecture Drivers

Architecture Design

Architecture Documentation

Architecture Evaluation

Architecture Work

Architecture Engagement Purposes

© Fraunhofer IESE

74

Foundations

Points in Time for Architecture Evaluation

System
Construction

System
Evolution

System
Migration /
Retirement

Architecture Evaluation with Fraunhofer RATE

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

Driver Integrity Check (DIC)

Architecture
Drivers

Rating

Support
Level Preparation ReportingEvaluation Project Management

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC)

Code Quality Check (CQC)

Interpretation

Poster available from OBJEKTspektrum

