
© Fraunhofer IESE

0

Product Line Engineering Lecture –
PL Infrastructures III (5)

Dr. Martin Becker

martin.becker@iese.fraunhofer.de

mailto:martin.becker@iese.fraunhofer.de

© Fraunhofer IESE

1

Schedule - Lectures

© Fraunhofer IESE

2

Schedule - Exercises

© Fraunhofer IESE

Product Line Scoping

--- Recap

Product Line Infrastructure

Part II: Variability Realisation ---

How to realize

variability resolution support?

© Fraunhofer IESE

4

Core Assets

Content:

 Product Model, Process Model, Resource

Lifecycle Phase:

 Requirements, System Design, Unit Design,

Code, Image, Data, Test, Integration, Documentation, Configuration, Patch

Granularity:

 Subsystem, Component, Folder,

Document, Document Fragment / Element

Genericity:

 Generic, Specific

Data Type:

 Model, Structured Text (e.g. XML), Text, Binary

01010001010

10101010101

01010101010

01010101001

00010001000

10100101011

01010001010

10101010101

01010101010

01010101001

00010001000

10100101011

© Fraunhofer IESE

5

2 Layers of Variability Management

Requirements Core Assets Architecture/Design Core Assets Realization Core Assets

A WSN must hav e wireless transmission.

Transmitted data has <a /no> timestamp.

A WSN must hav e detection capabilities.

<DetectionMode> is detected.

A WSN contains sensors.

The sensor is a <SensorTy pe> sensor.

textual graphical

WSN

W/O

Time

Position

Sensor

Tilt

Detect.

Drop

Detect.

Noise

Detect.

Wireless

Transmiss.

With

Time

Detection Sensor

Sound

Sensor

Legend:

 variation point

 optional variant

 alternative variants

 multiple coexist. var.
 refers to

Decision VP Resolut.

Time Transm. <a/no> N, y

Detect. Ty pe <Det.Mod> Tilt,

 Drop,

 Noise

Sensors SensorTy pe posit.,

 noise

Decision VP Resolut.

Time Transm. Wireless Tr. N, y

Detect. Ty pe Detection- tilt,

 sub-f eat. drop,

 noise

Sensors Sensor- Posit.,

 sub-f eat. Noise

Requirements Variability Models

…

UML Structural Model

Arch./Design Var. Models

Decision VP Resolut.

Time Transm. time_trans. N, y

Detect. Ty pe detector tilt,

 sub-class drop,

 noise

…

void main() {

 init();

#if HAS_X_POS_SENSOR

 init_x_position();

#endif

#if HAS_SOUND_SENSOR

 init_sound();

#endif

 while(true) {

 if(period_elapsed) {

 period_elapsed=false;

...

Condit. Compiled C Code

Realization Var. Models

Decision VP Resolut.

…

Sensors HAS_?_SNS. X_POS,

 SOUND

High-Level Variability Model

Decision Resolut. Low-lev el d.

Time Transm. N, y R1.Tim., R2.Tim., A1.Tim., …

Detect. Ty pe tilt, R1.Det., R2.Det., A1.Det, …

 drop,

 noise

Sensors posit., R1.Sns., R2.Sns., …, I1.Sns.

 noise

R1 R2 I1 A1

Core Asset Model

Variability Model
(e.g. PuLSE Decision Model (DM))

© Fraunhofer IESE

6

Summary: Variability Realisation:
What has to happen after the customer has selected his product?

• Markup, List Points, Point Cuts Identify affected locations

• Provide background knowledge Understand context

• Provision of asset fragments, automated selection,
generation, provision of realisation knowledge

Provide appropriate
realisation

• Automated integration (inclusion) of parts
Integrate the realisation

variant into the Core Asset

• Separate core and variant (change), support diff
and merge

Manage the core asset
and the variants

© Fraunhofer IESE

7

Variation Point

Variation Point :==

identifies a location

at which variation will occur

within core assets.

Goals: 1) to highlight where variant elements occur
 (which makes variation easy to see and control);

 2) to improve traceability of variability
 (requires that goal 1 has been fulfilled).

© Fraunhofer IESE

8

Variability Mechanism

Variability Mechanism :==

is a particular way

of realizing variation

in core assets.

 Goals: 1) to efficiently package common & variant elements;

 2) to reduce evolution effort.

© Fraunhofer IESE

9

Variability Mechanism Primitives

 Selection

 selecting predefined variants

 e.g. component wiring, if-blocks, if-defs

 Generation

 generating predefined variants

 e.g. model-driven development

 Substitution

 replacing a variation point by a value

 e.g. parameterization

 e.g. code weaving

selection

generation

substitution

© Fraunhofer IESE

10

General Purpose Approaches

 Templating

 Decision Modeling

 Preprocessing

 CPP, M4, sed, scripting languages

 Frame-Technology

 Model-Editor automation

 Configuration Management

© Fraunhofer IESE

11

class Message {

public:

#ifdef T9_SUPPORTED

 void checkWordList() {...}

#endif

#ifdef ATTACH_SUPPORTED

 void addAttachment() {...}

#endif

};

class MessageUI {

public:

 void edit(Message &msg) {

#ifdef T9_SUPPORTED

 if(t9Active) msg.checkWordList();

#endif

 // perform editing

#ifdef ATTACH_SUPPORTED

 msg.addAttachment();

#endif

}};

Conditional Compilation: Example

T9
#ifdef T9_SUPPORTED

 void checkWordList() {...}

#endif

#ifdef T9_SUPPORTED

 if(t9Active) tr.checkWordList();

#endif

#ifdef ATTACH_SUPPORTED

 void enableAttachButton() {...}

#endif

#ifdef ATTACH_SUPPORTED

 tr.enableAttachButton();

#endif

Attachment

class Message {

public:

 void checkWordList() {...}

};

class MessageUI {

public:

 void edit(Message &msg) {

 if(t9Active)

 msg.checkWordList();

}};

One

possible

product

Specification

T9 supported

#define T9_SUPPORTED

#undef ATTACH_SUPPORTED

© Fraunhofer IESE

12

Frame Technology

ADAPT Messaging.frame

ADAPT Addressbook.frame

Standard.spc

Class Messaging {

....

VP SendMsgToAddressBook

VP_END

.....

}

Messaging.frame

Class AddrBook {

....

VP SendMsgToAddressBook

VP_END

.....

}

Addressbook.frame

Base Product

© Fraunhofer IESE

Product Line Scoping

--- Product Line Infrastructure

Part III: Configuration Management ---

How to manage variants?

© Fraunhofer IESE

14

Evolution

Lehman‘s first law

 "A program that is used in a real-world environment

necessarily must change or become progressively less

useful in that environment"

Software components continue to evolve

 Possibly independent of each other

 Possibly at different sites

© Fraunhofer IESE

15

Configuration Management == Controlling

Software
 Complexity

Process
Complexity

Software
Evolution

Configuration
Management

controls

“Which state worked
at time X“?

“What are the
effects of

change X"?

“Who is allowed to
perform

change X"?

The goal is to improve/maintain a good level

of maintenability of the system.

© Fraunhofer IESE

16

Paths to Maintainability

Programming Languages

Architectures

Configuration Management

Flexibility,

Simplification,

Documentation

Abstraction,

Structuring,

Standardization

Evolution

Control

© Fraunhofer IESE

17

What is this Configuration we want to control??

Configuration

Tag

A Configuration is a snapshot

of the software being developed

(with all the relevant artifacts)

at a given point in time.

The configuration is represented

as a TAG in the SCM versioning

Tools.

© Fraunhofer IESE

18

Solution: Configuration Management (CM)

 Identification

 Identifies the units to be controlled

 Controlling

 Determines rules for the execution of changes

 Accounting

 Packages information and statistics

 Auditing

 Checks the fulfillment of requirements

Tage

D
e

fe
k

te

Tage

D
e

fe
k

te

Tage

D
e

fe
k

te
/F

ix
e

s

Tage

D
e

fe
k

te
/F

ix
e

s

Tage

D
e

fe
k

te
/F

ix
e

s

Tage

D
e

fe
k

te
/F

ix
e

s

set goal(s)

characterize

and understand

select

methods,

techniques,

tools

analyze

experiences

prepare

experiences

for reuse

11

22

3344

55
66

p
erfo

rm
 c

o
rr

e
c
t

control

© Fraunhofer IESE

19

Configuration Identification

 Define the elements that need to be controlled

 The controlled elements are called Configuration Items (CIs)

 Aspects of identification

 Selection (what is a CI, what is not a CI)

 Structure (CI hierarchies)

 Naming (unique identification)

 Characterization (further meta data)

 Access (CI server location, access rules)

© Fraunhofer IESE

20

Configuration Control

 Main Component of configuration management

 Configuration Control areas

Version management

Change management

Build management

Release management

© Fraunhofer IESE

21

Version Management

Main line Branch

Merge

Revision

© Fraunhofer IESE

22

1.5

Branching and Merging Scenarios

1.0

1.1

1.2

1.3

1.4

1.6

1.3.1

1.3.2

1.3.3

Maintenance

Branch

Trunk

RELEASE-01
The more distant the contributors are

from the common ancestor the more

difficult the merge is (more changes to

merge)

Ideally the distant must be kept small to

facilitate the final merge

© Fraunhofer IESE

23

Ancestor Update

1.5

1.0

1.1

1.2

1.3

1.4

1.6

1.3.1

1.3.2

1.3.3

Branch

Trunk

1.5

1.0

1.1

1.2

1.3

1.4

1.6

1.3.1

1.3.2

1.3.3

Branch

Trunk

1.5

1.0

1.1

1.2

1.3

1.4

1.6

1.3.1

1.3.2

1.3.3

Branch

Trunk

Common Ancestor
Merge Contributors

Merge

© Fraunhofer IESE

24

1.5

1.0

1.X

1.3

1.4

1.6

1.3.1

1.3.2

1.3.3

Branch 1

1.3.2.1

1.3.2.2

1.3.2.3

Branch 2

1.3.2.3.1

1.3.2.3.2

1.3.2.3.3

Branch 3

1.3.2.3.4

1.3.2.3.5

1.7

1.X

1.5.1

1.5.2

Branch 4

1.25

Merge 1

Merge 2

Exercise: Which Merge is more difficult?

Common Ancestor
Merge Contributors

Merge

© Fraunhofer IESE

25

Merge Early and Often

 Branching policies must be established. Use it wisely!

 The complexity of a merge can range from simple to impossible

 Merging a complex change to a heavily changed main line may not

be possible without significant manual intervention

© Fraunhofer IESE

26

Change Management

 Change management makes the process of a change systematic

 Changes must be formally requested and approved

 Core concept 1:

Change Request (CR)
Submited in a Bug tracking tool such as Bugzilla, Trac, Mantis, etc…

 Core Concept 2:

Change Control Board (CCB)
Responsible role to analyze and approve CR’s

 A Simplified Change Management Process:

Request

change

Approve

change

Implement

change

© Fraunhofer IESE

27

Construction (Build)

 The goal of construction is to create a build , i.e., an executable

version of the system or of a component

 Each build process must be reproducible

 Build processes are automated

 With the help of build scripts and tools (e.g., make, ant, etc…)

 Build scripts are important configuration elements

© Fraunhofer IESE

28

Example of a Build Process

System

Builder

Build Script

Version

Management

System

Source Code

Component

Versions

DSL

Generator

Compiler

Object Code

Component

Linker

Executable

System

Optional Step

© Fraunhofer IESE

29

Trend: Continuous Integration (1/2)

1
2

3

4

Periodically
Scheduled

(Daily)

4

© Fraunhofer IESE

30

Trend: Continuous Integration (2/2)

Architecture Violations?

© Fraunhofer IESE

31

Accounting

 The goal of accounting is to collect and provide information from the

CM system

 Examples of information

 Status of a CE

 Status of a change request

 Status of all open changes

 Information about the
assignment of CEs

 How many check-outs this month?

© Fraunhofer IESE

Product Line Scoping

Software Configuration

Mangement

&

Software Product Lines

© Fraunhofer IESE

33

Variant-Rich Systems

 Systematic reuse

 Exploitation of commonalities

 Determination of variabilities

Product

1
Product

2
Product

3 2

© Fraunhofer IESE

34

Software Product Lines

Keyword:

Product Lines

Development for Reuse

“ Family Engineering ”

Reusable

Assets

Feedback

Development with Reuse
Development with Reuse Development with Reuse

“ Application Engineering ”

Feed-Foward

© Fraunhofer IESE

35

Management of Product Line Variation

Variation in Space x Time x Lifecycle

[source: Biglever: The Systems and Software Product Line Lifecycle Framework]

© Fraunhofer IESE

36

Build Management: Standard in the case of Variant

Richness

Variant-Rich System

Common + variant parts
are clearly defined

 Architecture is fundamental here

Build Management

Product

© Fraunhofer IESE

37

Call of make, Ant,
Maven, XSLT,

JavaScript, etc.

Construction of the Product after Configuration

Feature
configuration

Derivation of
the files or

the fragments
that become

part of the product

Product

Mapping of
features to files

© Fraunhofer IESE

38

SPL and SCM Challenges

SCM &
 SPL

Change
Impact

Analysis

Multiple
Lifecycle

s

Tracking
Reused
Assets

Support
Feedback
and Feed-
Forward

Tracking
Changes
Propagation

Managing
Branches

© Fraunhofer IESE

39

Software Product Lines Erosion

 Erosion is a problem that should be avoided

in product lines

 It refers to a situation where reusable

artifacts are ultimately not reused

 One reason for this is the lack of feedback

or feed-foward from Application to Family

Engineering and vice-versa
Development for Reuse

“ Family Engineering ”

Reusable

Assets

Feedback

Development with Reuse
Development with Reuse Development with Reuse

“ Application Engineering ”

Feed-foward

© Fraunhofer IESE

40

Feedback and Feedfoward Changes

 Core Concept:

Propagation Request (PR)

Development for Reuse

“ Family Engineering ”

Development with Reuse
Development with Reuse Development with Reuse

“ Application Engineering ”

Propagation Request

 Update/Rebase asset instance

 Feedback changes to core assets

 Creating a core asset from

application specific asset

Benefits of PR´s

Changes Propagation are…

 Tracked individually

 Analyzed individually

 Analyzed WHEN it is time

 Maybe Rejected after evaluation

 Maybe Approved after evaluation

 Implemented according to release

plans

© Fraunhofer IESE

41

Product

Line
 Each product has

independent configuration

manage after it is instantiation

from the core assets

 100 product instances == 100

independent divergent

product evolutions

 A separate engineering

activity is required to refactor

changes made to a product

instance back into the core

assets and other products

(PR)

© Fraunhofer IESE

42

Production Line

 Individual products should

be treated as transient

outputs of the production

line that can be discarded

and re-instantiated as

needed

 Reduces the n+1

dimensional configuration

management problem to

the well known 1

dimensional problem

© Fraunhofer IESE

43

Tracking changes - How do we know…

 … which products will be affected after a core

 asset change?

 … which product instances changed a certain

 core asset in the application level?

 … which products reproduces a certain bug

 after we find the bug in one product

 instance?

© Fraunhofer IESE

44

Illustrative Example: Tracking changes in products

S

Application

Engineering

Product 1

Product Line

Artifact Base

Family Engineering

Application

Engineering

Product 2

Application

Engineering

Product 3

A B

© Fraunhofer IESE

45

Illustrative Example: Sample Instantiations (black box)

SS

SS

SS

SS

S’S’

S’S’

Product 1

Product 2

Product 3

© Fraunhofer IESE

46

Illustrative Example: Sample Instantiations (white box)

S

A B

S

A’ B

S

A B

S

A B’

Product 1

Product 2

Product 3

Framework

Engineering

© Fraunhofer IESE

47

Illustrative Example: Traceability given through CM

SS

SS

SS

SS

A

A

A

A A’

A

A

A

A A’

B

B

B

B

B’

B

B

B

B

B’

S’S’

S’S’

Product 1 branch of S

Product 1 branch of A

Product 1 branch of B

© Fraunhofer IESE

48

Illustrative Example: Complexity of CM

1. Open the version graph of S

2. Identify the product branches (there may be many other

temporary branches next to the product branches)

3. For each product branch look for new S versions since the last

synchronization between family and Application Engineering

4. For each new version of S query the configuration management

system for the changes made in that version

5. Filter out product-specific changes and identify changes that

may affect S

Find out if something has changed in the instances of S.

1 Activity requires 5 operations

© Fraunhofer IESE

49

Solution: Layer on top of configuration management

Conf igurat ion Management

Customizat ion Layer

Product Line Engineer

PLE evolution

control scenarios

Storage and controlled evolution of

versioned artifacts

© Fraunhofer IESE

50

Application Engineer Framework Engineer

Encapsulating Configuration Management

add-core-asset("Collection")

 add directory in repository

 mark it with special tag

 add all directory entries

 mark them with special tag

 enable according permissions

release-core-asset("Collection")

 enable according permissions for making

"Collection" available for reuse

show-instance-diff("Collection")

 check, is "Collection" a core asset?

 search history of "Collection" for

branches marked with special tag

 traverse to branches, check history

instantiate-core-asset("Collection",

 "Product1")

 check, is "Collection" a core asset?

 do I have permissions?

 create branch of core asset elements

 mark branch with special tag

commit

 common commit

show-core-diff("Collection")

 check, have I branched off "Collection"?

 check history of core asset "Collection"

 is there a released change in the core asset?

