Product Line Engineering Lecture —
PL Infrastructures lll (5)

Dr. Martin Becker

0

~ Fraunhofer
IESE

mailto:martin.becker@iese.fraunhofer.de

Schedule - Lectures

>

Date Content Time Location
29-0ct-10 Intraduction 15350 - 17:00 406 1. Mehmer (IESE)
A-Mov-10 Scoping 15:30 - 17:00 0406 . Mehmer [IESE)
12-Mav-10 PL Infrastructure | {variahility Modelling) 15:30 - 17:00 Z04.06 1. Mehmer (IESE)
19-Mow-10 PL Infrastructure | (v ariability Realization) 15:30 - 17:00 0406 J. Mehmer (IESE)
3-Dec-10 Canfiguration Management 15:30 - 17:00 0406 1. Mehmer (IESE)
10-Dec-10 PL Economics and Approaches 1530 - 17:00 Z04.06 1. Mehmer (IESE)
17-Dec-10 Requirements Engineering 1530 - 17:00 Z04.06 1. Mehmer [IESE)
i f-Jan-11 PL-Architectures | 15:30 - 17:00 J04.06 J. Mehmer (IESE)
14-dan-11 PL-Architectures |l 15:30 - 17:00 04 06 1. Mehmer (IESE)
21-Jan-11 Component Engineering 1530 - 17:00 Z04.06 1. Mehmer (IESE)
28-Jan-11 Quality Assurance 1530 - 17:00 Z04.06 1. Mehmer [IESE)
4-Feb-11 Crganizational Issues f Adoption 15:30 - 17:00 J04.06 J. Mehmer (IESE)
11-Feb-11 Reengineering / Wariant Analysis 15:30 - 17:00 A4 .06 1. Mehmer (IESE)

\

~ Fraunhofer

IESE

Schedule - Exercises

Exercises
Date Content Time Location
12.11.2010 Scoping, Vanability Modeling 17:15 - 18:45 Z04.06 J. Mehmer (IESE)
10.12.2010 WM Realization, Configuration Management 17:15 - 16:45 Z04.06 J. Nehmer (IESE)
14.01.2011 PL Architectures 17:15 - 18:45 20406 J. Nehmer (IESE)
21.01.2011 Component Engineering 17:15 - 18:45 Z04.06 J. Nehmer {IESE)
11.02.2011 Adoption, Variant Analysis 17:15 - 18:45 Z04.06 J. Nehmer (IESE)

2

\

~ Fraunhofer

IESE

Recap
Product Line Infrastructure
Part Il: Variability Realisation

Core Assets

Content:
B Product Model, Process Model, Resource
Lifecycle Phase:

B Requirements, System Design, Unit Design,
Code, Image, Data, Test, Integration, Documentation, Configuration, Patch

Granularity:

B Subsystem, Component, Folder,
Document, Document Fragment/ Element

= 0101000Y010

- 10101010101

[«C)

] [] DEI 01010101001

= = 00010001000
— 10100101011

Genericity:

® Generic, Specific
Data Type:

01010001010
10101010101
01010101010
01010101001
00010001000
10100101011

B Model, Structured Text (e.g. XML), Text, Binary 4

\

~ Fraunhofer
IESE

Legend:
2 Layers of Variability Management oovorer varan

I multiple coexist. var.
................ > refers to

. . High-Lewvel Variability Model
Variability Model g

Decision Resolut. [ow-level d.

(e.g. PULSE Decision Model (DM)) Deect. Type i "'R]‘Tlm‘..F.{?T"’T, A?p“”?...

Detect. Ty pe [tilty

Arch. /Desfgn Var. Models
- ‘I‘Resolut. Al DeCISIor} 4 vp

Realization Var. Models

A =, | Decision VP Resolut

Résolut

Resolut,|

) N, y Time Tranﬁg V\fireless T Ney™ T|me‘f‘é S .tirpe_trans. N,y 7%

Detect& ype : Tilt, e Detect. Ty p Det,ectlo;v kilt, Detect. T¥pe [dgtector itt, Sérsors
i D'rop,

$k,'!b ‘Feat. drop, ;sub-::class drop,
! Noise noise H noise
Sensors&: NSO posit., SensoréL, S@ns_or— i

HAS_? SN$. X PO
SOUND

7
gnsg Posit., - P 7
noise 7 gub-teat. | Noisep7 5 H

) _,shequirements Core Assets ! : Architegture/Design Core Assets Realizatién Core Assets
A WSN must havewire?s transmission. 4 E {
Transmittet! data has <&¥/

5 E‘Iﬁ’;?;t” void main§) ¥
no= timestamp. i + eventt_Rappened : Boolean init () i
I R D _: + event_fime : Integer . v
i i VA i + main () . #if HAS X PGS SENSOR
A WSN #nust hav e detectionicapabilities. init_x_position ();
<DetectionMode> is detected. /\ : #endif
H : #1if HAS_ SOUND SENSOR
A WSN contains sensors. \ Wi W, i init_sound () ;
The sensoris a<SensorTy pe> sensor. | , il

| detector #endif
. + transrmit_time () + detect () while(true) {
textual graphical

if (period _elapsed) {

period elapsed=false

wene TN R
Core Asset Model

Condit. Compiled C Code
UML Structural Model

IESE

Summary: Variability Realisation:
What has to happen after the customer has selected his product?

[o[CTayijaVAE i {=lei(=lo M[olor=1i[o]a ks « Markup, List Points, Point Cuts

Understand context Provide background knowledge

Provide appropriate » Provision of asset fragments, automated selection,
realisation generation, provision of realisation knowledge

Integrate the realisation

variant into the Core Asset B Automated integration (inclusion) of parts

age ore a » Separate core and variant (change), support diff
and the variants and merge

6

\

~ Fraunhofer

IESE

Variation Point

Variation Point ;== %ﬁ

identifies a location

at which variation will occur

within core assets.

Goals: 1) to highlight where variant elements occur
(which makes variation easy to see and control);

2) to improve traceability of variability
(requires that goal 1 has been fulfilled).

7

\

~ Fraunhofer

IESE

Variability Mechanism

Variability Mechanism :==
IS a particular way
of realizing variation

In core assets.

Goals: 1) to efficiently package common & variant elements;
2) to reduce evolution effort.

8

\

~ Fraunhofer
IESE

Variability Mechanism Primitives

1(p) = {4} M Selection
f(p) selecting predefined variants
e.g. component wiring, if-blocks, if-defs

*—s
selection
W Generation
e(p, S)={A. B, C, .}
generating predefined variants
N) L83 e.g. model-driven development
s 1
generation

B Substitution
“P)=p replacing a variation point by a value
e.g. parameterization

‘P_’E_P_' e.g. code weaving

substitution

9

\

~ Fraunhofer
IESE

General Purpose Approaches

B Templating

B Decision Modeling

M Preprocessing
CPP, M4, sed, scripting languages
Frame-Technology
Model-Editor automation

B Configuration Management

10

\

~ Fraunhofer

IESE

#define T9 SUPPORTED
#undef ATTACH SUPPORTED

Conditional Compilation: Example

class Message {

public:
#ifdef T9 SUPPORTED
T9 void checkWordList () {...} One
4 . possible
endif
product
#ifdef ATTACH SUPPORTED Attachment Specification
void enableAttachButton() {...} T9 supported

#endif

}i ~ -
class MessageUI {
public:

void edit (Message &msg) {

#ifdef T9 SUPPORTED diilwﬁsxw*
_ u 1cC:
if (t9Active) tr.checkWordList () ; P void checkWordList () {...}
#endif }i
L class MessageUI {
// perform editing ublic:
#ifdef ATTACH_SUPPORTED void edit (Message &msg) {
tr.enableAttachButton () ; if (£9Active)

msg .checkWordList () ;

#endif by:

} Yo

11

\

~ Fraunhofer
IESE

Frame Technology

Base Product

T

Standard. spc

ADAPT Messaging.frame
ADAPT Addressbook. frame

Messaging.frame Addressbook. frame
Class Messaging { Class AddrBook {
VP SendMsgToAddressBook VP SendMsgToAddressBook
VP END VP END
} }
12
—

~ Fraunhofer
IESE

Product Line Infrastructure
Part Ill: Configuration Management

Evolution

B Lehman's first law

"A program that is used in a real-world environment
necessarily must change or become progressively less
useful in that environment”

W Software components continue to evolve

Possibly independent of each other

Possibly at different sites

14

\

~ Fraunhofer
IESE

Configuration Management == Controlling

Software “What are the
Complexity effects of
change X"?
Con fi g urat i on Software “Which §tate \Q/orked
at time X“?

Management Evolution

“Who is allowed to
perform
change X"?

Process
Complexity

The goal is to improve/maintain a good level
of maintenability of the system.

15

\

© Fraunhofer IESE % Frau n hOfer
IESE

Paths to Maintainability

Evolution
Control

Configuration Management

Programming Languages

Abstraction,
Structuring,

Standardization Flexibility,

Simplification,
Documentation

Architectures

16

\

—
© Fraunhofer IESE ~ Fraun hofer
IESE

What is this Configuration we want to control??

Element

A Configuration is a snapshot
of the software being developed

lib.c

(with all the relevant artifacts) . Q

at a given pointin time.

Configuration @

Tag

The configuration is represented
as a TAG in the SCM versioning
Tools.

@)

"

msg.cat util.h

Version

Component

17

\

~ Fraunhofer

IESE

Solution: Configuration Management (CM)

« Unique identifier .. .
v | W [dentification —
_9 + Descriptive name
~ « (Check sum)

Identifies the units to be controlled

eee@computer society

® Controlling
Determines rules for the execution of changes

~ SM

— CcmMmmMiI

B Accounting
Packages information and statistics

B Auditing

Checks the fulfilment of requirements

18

\

~ Fraunhofer
IESE

Configuration Identification

B Define the elements that need to be controlled

The controlled elements are called Configuration Items (CIs)

B Aspects of identification
Selection (what is a Cl, what is not a Cl)
Structure (CI hierarchies)
Naming (unigue identification)
Characterization (further meta data)

Access (CI server location, access rules)

19

\

~ Fraunhofer

IESE

Configuration Control

B Main Component of configuration management

B Configuration Control areas

Version management
Change management
Build management

Release management

20

\

~ Fraunhofer

IESE

Version Management

m~

=

va v3

v3 T | vd

21

_——
© Fraunhofer IESE % Frau n hOfer
IESE

Branching and Merging Scenarios

Base
Trunk Contributor

b, e1) M(b, c2)
1.0
IR Source
1.1 @ () Contributors]
1.2

[Destination version = B +/. (b, c¢1) +/ (b, c2)

Maintenance
Branch The more distant the contributors are

from the common ancestor the more
difficult the merge is (more changesto
merge)

RELEASE-01

|deally the distant must be kept small to
facilitate the final merge

= |
il

22

\

~ Fraunhofer
IESE

Ancestor Update

) Common Ancestor
Sl Verge Contributors

\

~ Fraunhofer
IESE

Exercise: Which Merge is more difficult?

Branch 1) Common Ancestor
AO_J S Verge Contributors
PR SN Branch2 | ----- » Merge
1.X

{1.3.2.1

133) 1322

— Branch 3
14 | 1.3.2. 1.3.2.3.1
15 Blra;”‘l“ 13232
1i6 T%? :1.3.2.3.3:
____________ o B l
1.7 " Merge 1 13234
-

g3 24

~ Fraunhofer
IESE

Merge Early and Often

Fipare 4: Merging backto the parentbranch for file prog. ¢

B Branching policies must be established. Use it wisely!

B The complexity of a merge can range from simple to impossible

Merging a complex change to a heavily changed main line may not
be possible without significant manual intervention

25

\

~ Fraunhofer
IESE

Change Management

B Change management makes the process of a change systematic
B Changes must be formally requested and approved

Core concept 1.

Change Request (CR)

Submited in a Bug tracking tool such as Bugzilla, Trac, Mantis, etc...

Core Concept 2:
Change Control Board (CCB)

Responsible role to analyze and approve CR’s

® A Simplified Change Management Process:

Request
change

Approve
change

Implement
change

26

\

~ Fraunhofer

IESE

Construction (Build)

B The goal of constructionis to create a build , i.e., an executable
version of the system or of a component

B Each build process must be reproducible

® Build processes are automated
With the help of build scripts and tools (e.g., make, ant, etc...)

Build scripts are important configuration elements

27

\

~ Fraunhofer
IESE

Example of a Build Process []

V

Version DSL Linker
Management Generator
SYAIE

System
Builder

Source Code
Component Compiler
Versions

Executable

Build Script System

Object Code
Component

28

\

e e ~ Fraunhofer
IESE

Trend: Continuous Integration (1/2)

Feedback
Mechanism

Developer
Commit Changes

E— Commit Changes . - Pl !..

———— | Build Script
Developer
) Compile Source Code,
Commit Changes Subversion Cl Server Integrate Database,
Varsion Control Integration Build Hun Tests,
g/ Repository Machine Run Inspections,
Deploy Softwara

Periodically
Scheduled _

(Daily)

Developer

\

~ Fraunhofer

IESE

© Fraunhofer IESE

Trend: Continuous Integration (2/2)

Commit Code
Frequently

Write Automated
Developer Tests

Avoid Getting
Broken Code

Don't Commit Fix Broken Builds
Broken Code Immediately

All Tests and

Inspections Run Private

Builds

Must Pass

Architecture Violations?

30

© Fraunhofer IESE

\

~ Fraunhofer

IESE

Accounting

B The goal of accounting is to collect and provide information from the

C M SySte m /IDevelopment/Infrastructure/SAVE/core: Activity by Hour
of Day
B Examples of information “ZZZ
Status of a CE
Status of a change request I

DN B BB EA DN DD EEA DO P PP

Status of all open changes

Information about the
assignment of CEs

How many check-outs this month?

\

~ Fraunhofer

IESE

Software Configuration
Mangement

&
Software Product Lines

Variant-Rich Systems

Product

1

Product

2

Product

3

B Systematic reuse

® Exploitation of cCOMmonalities

B Determination of variabilities

33

\

~ Fraunhofer
IESE

Software Product Lines

Keyword:

. Feedback
Product Lines

Reusable
Assets

Feed-Foward

e e ~ Fraunhofer
IESE

34

\

Management of Product Line Variation

Baseline 1 Baseline 2 Baseline 3 Baseline4 ... BaselineM

Test Cases

(a]

o

Source Code =
Iﬂ.

' —

Design Modgls —

=

Requirements

Product A
Product B
Product N

Variation in Space x Time X Lifecycle

[source: Biglever: The Systems and Software Product Line Lifecycle Framework] 35

\

e e ~ Fraunhofer
IESE

Build Management: Standard in the case of Variant
Richness

Variant-Rich System

Build Management

>

Product
Common + variant parts
are clearly defined
—> Architecture is fundamental here
36
—

~ Fraunhofer

IESE

Construction of the Product after Configuration

Mapping of Call of make, Ant,
features to files Maven, XSLT,
‘ ‘ JavaScrlpt etc.
Feature Derivation of Product
configuration the files or

the fragments
that become
part of the product

37

\

~ Fraunhofer

IESE

SPL and SCM Challenges

Managing

Qan ches |

Tracking
Changes

Propagation J

© Fraunhofer IESE

Change
Impact

Qnalysis

Multiple
Lifecycle

Tracking
Reused

v\ssets
Support 3

Feedback
and Feed- | 38
Forward 4

\

~ Fraunhofer

IESE

Software Product Lines Erosion

Developmentwith Reuse
“Application Engineering ”

1 1)

Reusable Feed-foward
Assets

Developmentfor Reuse
“Family Engineering ”

M Erosion is a problem that should be avoided
In product lines

M |t refers to a situation where reusable
artifacts are ultimately not reused

® One reason for this is the lack of feedback
or feed-foward from Application to Family
Engineering and vice-versa

39

\

~ Fraunhofer
IESE

Feedback and Feedfoward Changes

® Core Concept:

Propagation Request (PR)

| Benefits of PR’s

Development with Reuse
“Application Engineering

7

Changes Propagation are...

Propagation Request Tracked individually

Analyzed individually
Analyzed WHEN it is time

B Update/Rebase asset instance

B Feedback changes to core assets

® Creating a core asset from Maybe Rejected after evaluation

application specific asset Maybe Approved after evaluation

Implemented according to release
Development for Reuse plans
“Family Engineering ”

40

\

~ Fraunhofer
IESE

Product
Line

W Each product has
Independent configuration
manage after it is instantiation
from the core assets

M 100 product instances == 100
Independent divergent
product evolutions

M A separate engineering
activity is required to refactor
changes made to a product
iInstance back into the core
assets and other products
(PR)

Artifacts Under Variation Management

& Variant Infrastructure

1 [] \
Common @tiaﬁon

Artifacts /

000

Domain Product Product Use
Engineering Instantiation Development

Figure 1 Variation Management of a Product Line

41

~ Fraunhofer
IESE

Production Line

B |ndividual products should

be treated as transient HEEEN

(_)utputs of the pro_ductlon Common T tantiation

line that can be discarded & Variant Infrastructur
)) Artifacts

and re-instantiated as

needed 000

B Reducesthe n+l
dimensional configuration
management problem to

Domain Product Use
the well known 1 Engineering Instantiation

dimensional problem

Figure 2 Variation Management of Production Line

42

~ Fraunhofer
IESE

Tracking changes - How do we know...

® ... which products will be affected after a core
asset change?

¥ ... which product instances changed a certain
core asset In the application level?

W ... which products reproduces a certain bug
after we find the bug in one product
Instance?

43

~ Fraunhofer
IESE

lllustrative Example: Tracking changes in products

Application
Engineering
Product 1

Product Line
Artifact Base

S

AmB

Application —
Engineering Application
Product 2 Engineering
Product 3

S O 2

Family Engineering

44

\

~ Fraunhofer
IESE

lllustrative Example: Sample Instantiations (black box)

S

S!

Product 1

i B

' Product 2

S!

oL

Product 3

45

\

~ Fraunhofer

IESE

lllustrative Example: Sample Instantiations (white box)

S

AmB

S
Nm B
S

Framework
Engineering

AmB

A

Product 1

Product 2

Product 3

46

\

~ Fraunhofer
IESE

lllustrative Example: Traceability given through CM

Product 1 branch of A

- e - - - - - = = = e,
- - - = - - -

Product 1 branch of S 2 \

\\
N
\
|
|
|
|
|
!
\
|
|
|
|
|
|
|
w
|
|
|
|
|
|
|
|
[}
n
-
)
)
-~
-

- T T e e — e oo

~

0y
wn

- - - - -

-
S e e - —--

n
\

~4 Fraunnorer
IESE

lllustrative Example: Complexity of CM

1 Activity requires 5 operations
Find out if something has changed in the instances of S.

. Open the version graph of S

. ldentify the product branches (there may be many other
temporary branches next to the product branches)

. For each product branch look for new S versions since the last
synchronization between family and Application Engineering

. For each new version of S query the configuration management
system for the changes made in that version

. Filter out product-specific changes and identify changes that
may affect S

48

\

e e ~ Fraunhofer
IESE

Solution: Layer on top of configuration management

Product Line Engineer

PLE evolution
control scenarios

Customization Layer

Storage and controlled evolution of
versioned artifacts

Configuration Management

49

\

~ Fraunhofer
IESE

Encapsulating Configuration Management

Framework Engineer

Application Engineer

add-core-asset("Collection")

add directory in repository
mark it with special tag
add all directory entries
mark them with special tag

enable according permissions

release-core-asset ("Collection")

enable according permissions for making
"Collection" available for reuse

show-instance-diff ("Collection")

check, is "Collection" a core asset?

search history of "Collection" for
branches marked with special tag

traverse to branches, check history

instantiate-core-asset("Collection",
"Productl")

check, is "Collection" a core asset?
do I have permissions?

create branch of core asset elements

mark branch with special tag
commit

B common commit
show-core-diff("Collection")

B check, have I branched off "Collection"?
B check history of core asset "Collection"

B is there a released change in the core asset?

50

\

~ Fraunhofer
IESE

