
© Fraunhofer IESE

Testing – A Tutorial

Alexander Klaus
Fraunhofer IESE
Dept. Information Systems Quality Assurance

Alexander.Klaus@.iese.fraunhofer.de
0631-6800 2245

Room B3.20

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

Testing –What is it?

Testing is the dynamic execution of software with real (i.e., concrete) input

Testing has sampling character – it is incomplete

Most software cannot be tested with all possible combinations of input

A statement of correctness of the software is possible only for the input used

We have to choose our tests as representative as possible
one test should represent as many inputs as possible

For this we have our test techniques

Testing can demonstrate the presence of errors, not their absence.
(Dijkstra)

© Fraunhofer IESE

Testing the input space of common applications

© Fraunhofer IESE

Testing – Dividing the input space via representatives

Test Case as
representative

Test Case as
representative

Test Case as
representative

Test Case as
representative Test Case as

representative

© Fraunhofer IESE

Test levels

Acceptance testing

Test in the customers environment, by the customer

System testing

Test of functionality and performance of a software against requirements
and customer requests

Against requirements specification

Integration testing

During step-by-step integration of the modules of a software to a whole
system

Testing of correct interaction and communication between modules

Against interface specifications

Module / Unit testing

Isolated check of a single module (and the structure)

Test of correct and complete realization of the module specification

Against unit specifications

© Fraunhofer IESE

Testing and object-orientation

Special features of object-oriented software

Associations („method calls“ / „messages“)

Lead to dependencies - not all functions can be tested in isolation

Sometimes there is a need for mock-objects and stubs

provide functions to be tested with values (no real functionality)

enable testing of functions which use other functions not yet implemented

Inheritance of objects

Order of development / testing: from general to special classes

Just more functions: ok, add some tests

Basis functions are overwritten: new test cases replace old ones for specialized
classes

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

Functional Testing

Black-box testing technique

Assess completeness of tests by comparing
them to the image of the specification

Testing ends when the specification
is completely covered with
test cases

Specification

Test input

Interpretation Image of the
specification

System

Assess
reactions

Completeness

Test derivation

Tester

© Fraunhofer IESE

Functional equivalence class construction

Principle: Reduce complexity until a rather easy selection of test cases is
possible

Result: Set of “equivalence classes”

Set of data, for which the system shows the same reactions

Every single value of a certain equivalence class is seen as
representing all values in this equivalence class

Approach: continuous case differentiation

© Fraunhofer IESE

Functional equivalence class construction

Case differentiation

Regarding input and output conditions

Example: A specification demands positive values as input for a certain function

Case differentiation

Positive input

Non-positive input

We can differentiate between valid and invalid equivalence classes

In this example:

Positive values = valid equivalence class (i.e., as specified / expected)

Non-positive values = invalid equivalence class

© Fraunhofer IESE

Functional equivalence class construction

Case differentiation regarding

Input: as seen

Output: differentiation of output classes

Choose values as input which create output in the chosen equivalence class

Example: Specification: output = 1<= X <= 99

One valid equivalence class

Each input which creates an output between 1 and 99

Two invalid equivalence classes

Each input which creates an output smaller than 1

Each input which creates an output greater than 99

© Fraunhofer IESE

Functional equivalence class construction

Based on these equivalence classes choose test cases

Use Boundary value analysis

Test the boundaries of equivalence classes

Experience shows: Faulty behavior is often produced when values are on the
boundary of an equivalence class

Possible addition:

Test of special values, like “0”

Choose values randomly

© Fraunhofer IESE

Functional equivalence class construction

Rules for constructing equivalence classes:
(“Myers: The art of software testing, John Wiley & Sons, New York, 1979”)

1. If an input condition specifies a value range, one valid and two
invalid equivalence classes are to be formed

2. If an input condition specifies a number of values, one valid and
two invalid equivalence classes are to be formed

© Fraunhofer IESE

Functional equivalence class construction

Rules for constructing equivalence classes:
(“Myers: The art of software testing, John Wiley & Sons, New York, 1979”)

3. If an input condition specifies a quantity of values which are to be
processed differently, a separate valid equivalence class has to be formed
for each value. For all other values except the valid values one invalid
equivalence class is to be formed.

Example: “stringed instruments: guitar, violin, viola, bass”

Four valid equivalence classes: guitar, violin, viola, bass

One invalid equivalence class: everything else, e.g. piano, drums, …

© Fraunhofer IESE

Functional equivalence class construction

Rules for constructing equivalence classes:
(“Myers: The art of software testing, John Wiley & Sons, New York, 1979”)

4. If an input condition specifies a certain situation which must be
fulfilled, one valid and one invalid equivalence class are to be
formed

© Fraunhofer IESE

Functional equivalence class construction

Rules to be followed

Functions receiving input from input-/ output-channels
Form valid and invalid equivalence classes

Reason: error handling routines for invalid input must be implemented

subordinate functions
Comply to limitations regarding input

Calling function may already implement error handling routines

Subordinate function is likely to NOT implement an additional error handling

Would lead to dynamically unreachable code

Dependencies between input values
Some combinations of input values may not be applicable

© Fraunhofer IESE

Functional equivalence class construction

Building test cases

Two rules

a) Derive test cases regarding valid equivalence classes by selecting test data from as
many valid equivalence classes as possible

Reduces number of test cases regarding valid equivalence classes to a minimum

b) Derive test cases regarding invalid equivalence classes by combining test data from
exactly one invalid equivalence class with test data from valid equivalence classes

When using two or more invalid input values at the same time, which value
caused the error handling to be processed?

© Fraunhofer IESE

Functional equivalence class construction

Example – Specification

A routine of a booking system computes invoices from private and business
customers.

For computing, the system requires the customer ID, the invoice amount, and the
receipt of payment.

Invoice amount and receipt of payment are positive numbers (minimum is one)
without leading zeros, limited to six digits.

Customer IDs start with a “P” for private or a “B” for business customers.

The routine produces true, if the receipt of payment is equal to or greater than
the invoice amount. The routine produces false, if the receipt of payment is less
than the invoice amount.

© Fraunhofer IESE

Functional equivalence class construction

Example – Specification

A routine of a booking system computes invoices from private and business
customers.

For computing, the system requires the customer ID, the invoice amount, and
the receipt of payment.

Invoice amount and receipt of payment are positive numbers (minimum is one)
without leading zeros, limited to six digits.

Customer IDs start with a “P” for private or a “B” for business customers.

The routine produces true, if the receipt of payment is equal to or greater than
the invoice amount. The routine produces false, if the receipt of payment is less
than the invoice amount.

Description: Blue and Bold: values; Red and Italic: conditions

© Fraunhofer IESE

Functional equivalence class construction

Example – Constructing equivalence classes

Variable Valid equivalence classes Invalid equivalence
classes

Customer ID 1)P123
2)B135

3) D123

Invoice amount 4) 1 <= IA <= 999999 5) IA <= 0
6) IA > 999999

Receipt of payment 7) 1 <= RoP <= 999999 8) RoP <= 0
9) RoP > 999999

Routine 10) True (RoP >= IA) 11) False (RoP < IA)

© Fraunhofer IESE

Functional equivalence class construction

Example – Creating test cases with boundary value analysis

Test case Equivalence
classes used

Customer
ID

Invoice
amount

Receipt of
Payment

Routine

1 1, 4L, 7U, 10 “P123” 1 999999 True

2 2, 4U, 7L, 11 “B135” 999999 1 False

3 3 “D123” 1 1 -

4 5 “P123” 0 1 -

5 6 “P123” 1000000 1 -

6 8 “P123” 1 0 -

7 9 “P123” 1 1000000 -

U: Upper bound
L: Lower bound
Red and Bold: Values from invalid equivalence classes

Most test cases are negative (i.e., they produce an error)!

© Fraunhofer IESE

Functional Testing

Remaining problem

State-based software

Reactions are different dependent on the state

State-based testing

Basis: state charts

UML (Unified modeling language)

In UML, state charts are used to describe the behavior of
classes

Here, we use state charts to derive test cases

State-based testing aims at complete test coverage of state charts

© Fraunhofer IESE

State-based Testing

Derivation of state chart diagrams

Text based specifications for state based systems are likely to be incomplete

Text based specifications are not sufficient for state-based systems

Different reactions based on actual state

In the following: example from

“Liggesmeyer: Software Qualität. Testen, Analysieren und Verifizieren von Software,
Spektrum Akademischer Verlag, Heidelberg, 2002”

© Fraunhofer IESE

State-based Testing

Example: Text based specification

Connection establishment and termination between a
calling and a called telephone extension is to be
realised. Initially, the connection is disconnected.
Whenever the receiver is put down, the software is in
this state.

If the connection establishment has begun, but is not
yet completed, the software is dialling. If the
connection establishment succeeded, the software is
connected.

Successful connection establishment always starts with
lifting the receiver, followed by dialling several digits
which form a valid telephone number.

Putting down the receiver always terminates the
connection. If a timeout occurs during dialling, only
putting down the receiver enables returning to the
initial state, disconnected.

© Fraunhofer IESE

State-based Testing

This specification is incomplete

No state regarding invalid telephone numbers

Transforming this textual specification into a graphical specification enables
checking for consistency and completeness

Notation used

State transitions: directed edges

Causing event: written in front of “/”

Associated action: written behind “/”

Event / action

Initial state: filled dot

© Fraunhofer IESE

State-based Testing

Timeout

Dialling Disconnected

Connected

Invalid number

lift receiver / reset
telephone number

put receiver down / reset telephone number

Timeout / reset
telephone number put receiver down

valid telephone number /
establish connection put receiver down /

reset telephone
number,terminate

connection

digit 0, digit 1, ..., digit
9 / add digits to

telephone number,check
telephone number

invalid telephone number

put receiver down /
reset telephone

number

Timeout / reset
telephone number

State chart

© Fraunhofer IESE

State-based Testing

Derive test cases by walking through the state chart

Test completeness criteria

Cover all states

Does not guarantee all state transitions to be tested

Cover all state transitions

Does guarantee all states to be processed at least once

Cover all events

Reasonable, if state transitions may be caused by
multiple, different events

Example: digits during dialling All events

All state
transitions

All states

includes

includes

© Fraunhofer IESE

State-based Testing

Example: Test cases for state transition coverage
(Notation: state, event state, event, …)

1. Disconnected, lift receiver → Dialling, put receiver down→ Disconnected

2. Disconnected, lift receiver → Dialling, Timeout → Timeout, put receiver down →
Disconnected

3. Disconnected, lift receiver → Dialling, Digit 0 … Digit 9 → Dialling, Digit 0 …Digit 9 →
Dialling, valid telephone number → Connected, put receiver down → Disconnected

4. Disconnected, lift receiver → Dialling, Digit 0 … Digit 9 → Dialling, Digit 0 …Digit 9 →
Dialling, Digit 0 … Digit 9 → Dialling, Digit 0 … Digit 9 → Dialling, invalid telephone
number → Invalid number, put receiver down→ Disconnected

5. Disconnected, lift receiver → Dialling, Digit 0 … Digit 9 → Dialling, Digit 0…Digit 9 →
Dialling, Digit 0 … Digit 9 → Dialling, Digit 0 … Digit 9 → Dialling, invalid telephone
number → Invalid number, Timeout → Timeout, put receiver down → Disconnected

© Fraunhofer IESE

State-based Testing

This state chart is not complete

Describes desired behavior

All test cases describe regular cases

Test cases for error situations are not included and therefore likely to be
neglected

Mitigation: add an error state to the state chart

All events not shown are treated as if they were ignored

E.g.: dialling digits when disconnected

© Fraunhofer IESE

State-based Testing
Enriched state chart

Timeout

Dialling Disconnected

Connected

Invalid number

lift receiver / reset
telephone number

put receiver down / reset telephone number

Timeout / reset
telephone number

put receiver down

valid telephone number /
establish connection put receiver down /

terminate
connection,reset

telephone number

digit 0, digit 1, ..., digit
9 / check telephone
number,add digits to
telephone number

invalid telephone number

put receiver down /
reset telephone

number

Timeout / reset
telephone number

Failure

lift receiver, valid telephone
number, invalid telephone

number

lift receiver, Timeout,
valid telephone
number, invalid

tlelephone number

put receiver down, Timeout, valid
telephone number, invalid

telephone number

lift receiver,
valid telephone
number, invalid

telephone
number

lift receiver

© Fraunhofer IESE

State-based Testing

Now we could test all combinations

This is often not possible due to resource limitations

How to select test cases?

Normally, three situations are distinguished for the selection

Events that cause an action / transition if they appear in a certain state

Events that may be ignored if they appear in a certain state

Events that require an error handling if they appear in a certain state

The last category is covered by test cases generated from the enriched state chart

© Fraunhofer IESE

State-based Testing

Suitable for module and integration testing

Disadvantage

Complex systems: State explosions

Only weak coverage is possible

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

Structural Testing

Specification

Tester

White-box Testing Technique

Impact of input on internal status or
behavior is measurable or observable

Approach not always applicable

Test
input

Interpretation Interpreted
specification

n1

n2

n3

n4

n5

System

Evaluation of
results

© Fraunhofer IESE

Structural Testing

Evaluation of adequacy, completeness (=test quality) and test case
development based on the module (program code) structure

Evaluation of test results according to the module specification

Control flow-oriented techniques

Based on statements, paths, branches, conditions

Data flow-oriented techniques (not covered here)

Based on dependencies between definition and use of data/variables

Advantage
Consideration of the structure of the implementation

Disadvantage
Not realized but specified functions will not be detected

© Fraunhofer IESE

void countCharacter(int &vowelNumber, int &totalNumber)

// precondition: vowelNumber <= totalNumber

{ char Character;

cin>> Character;

while ((Character >= 'A')&&(Character <= 'Z')&&
(totalNumber < INT_MAX))

{
totalNumber = totalNumber +1;

if((Character == 'A')||(Character == 'E')||

(Character == 'I')||

(Character == 'O')||(Character == 'U'))

{

vowelNumber = vowelNumber + 1;

}

cin>> Character;

} //end while

}

Example of control flow

n1

n2

n3

n4

n5

© Fraunhofer IESE

Structural Testing

Types of structural testing

Control flow-oriented techniques

Statement coverage

Branch coverage

Decision coverage

© Fraunhofer IESE

Simplest control flow-oriented test technique

Notation: C0

Execution of each statement / node of the control flow graph at least once

Coverage metric: relation of executed and total statements

Statement coverage test

© Fraunhofer IESE

Statement coverage test case

n1

n2

n3

n4

n5

vowelNumber=0, totalNumber=0, input=‘A‘, ‘1‘

void countCharacter(int &vowelNumber, int &totalNumber)

// precondition: vowelNumber <= totalNumber

{ char Character;

cin>> Character;

while ((Character >= 'A')&&(Character <= 'Z')&&
(totalNumber < INT_MAX))

{
totalNumber = totalNumber +1;

if((Character == 'A')||(Character == 'E')||

(Character == 'I')||

(Character == 'O')||(Character == 'U'))

{

vowelNumber = vowelNumber + 1;

}

cin>> Character;

} //end while

}

© Fraunhofer IESE

Structural Testing

Types of structural testing

Control-flow oriented techniques

Statement coverage

Branch coverage

Decision coverage

© Fraunhofer IESE

Coverage of every branch of the program

Notation: C1

Subsumes the statement coverage test

Widely accepted minimum criterion for structural testing

Branch coverage test

© Fraunhofer IESE

void countCharacter(int &vowelNumber, int &totalNumber)

// precondition: vowelNumber <= totalNumber

{ char Character;

cin>> Character;

while ((Character >= 'A')&&(Character <= 'Z')&&
(totalNumber < INT_MAX))

{
totalNumber = totalNumber +1;

if((Character == 'A')||(Character == 'E')||

(Character == 'I')||

(Character == 'O')||(Character == 'U'))

{

vowelNumber = vowelNumber + 1;

}

cin>> Character;

} //end while

}

Branch coverage test case
vowelNumber=0, totalNumber=0, input=‘A‘, ‘B‘, ‘1‘

n1

n2

n3

n4

n5

© Fraunhofer IESE

Structural Testing

Types of structural testing

Control-flow oriented techniques

Statement coverage

Branch coverage

Decision coverage

© Fraunhofer IESE

Question: Is branch coverage useful for testing complex decisions?

Example:

Condition coverage test

Simple decision:

if (x > 5)

Complex decision:

if (credit card defect || credit card invalid || PIN wrong || Timeout)

if (((u == 0) || (x > 5)) && ((y < 6) || (z == 0)))
[= if ((A||B)&&(C||D)]

© Fraunhofer IESE

Each partial decision
influences the complex
decision

Pairwise test cases

One partial decision changes

The other partial decisions keep
constant

Complex decision should change

Suitable if there are many
complex decisions in your code

A B C D (A||B)&&(C||D)

I

1

F F - - F
2

3

4

II 5 F W F F F

III 6 F W F W W

IV
7

F W W - W
8

V
9

W - F F F
13

VI
10

W - F W W
14

VII

12

W - W - W
11

15

16

MC/DC – modified condition / decision coverage

Effort of (n+1) test cases
for n partial decisions

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

Unit Testing

How to test?

Concentrate on black-box techniques, and use white-box techniques
only if required

Black-box testing is faster and is easier

Where to obtain data for the test cases?

From the unit specifications

Unit testing is also called „developer testing“

Sometimes there are no requirements for this stage to derive test cases

This is not considered good development style!

Information out of the code is then needed

© Fraunhofer IESE

Unit Testing

When should unit testing start?

As soon as possible; developers should program and test nearly in parallel. A
class can only be considered “ready” if it has been tested.

Write test cases as soon as the resp. (unit) requirements specification is ready

Some approaches even propose to write test cases before the resp. code is
written (“Test-driven development”).

System testing cannot start, if unit testing has not been finished.

Unit testing should finish in parallel to development.

The less code you write between two test runs, the less you have to check in case
on an error.

© Fraunhofer IESE

Unit Testing

Features of units

Several different types of methods

Visibilities

Modalities

© Fraunhofer IESE

Unit Testing

Testing method types

Just like in development, there is a „best“ order

1. Contructors

2. Get-Methods

3. Is-Methods

4. Set-Methods

5. Iterator-Methods (next element)

6. Calculation methods

7. Other methods

8. Destructors

© Fraunhofer IESE

Unit Testing

Visibilities

We test from restrictive to non-restrictive

1. Private (see next slide)

2. Protected

3. Public

Modalities

Some methods require a certain order of calls (and/or a state) to work
properly, e.g., stack-methods (modal methods)

Some methods do not (non-modal)

We test the correct order of calls first, then the incorrect order

© Fraunhofer IESE

Testing private methods

Testing private methods is not indisputable

If you have to test private methods, use

a nested test class

reflection

If there is significant functionality that is hidden behind
private or protected access, that might be a warning sign
that there’s another class in there struggling to get out.
When push comes to shove, however, it’s probably better
to break encapsulation with working tested code that it is
to have a good encapsulation of untested, non-working
code.

(Hunt, A., Thomas, D.: Pragmatic Unit Testing : In Java with JUnit. The
Pragmatic Starter Kit - Volume II, Raleigh, The Pragmatic Programmers, 2004)

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

System Testing

Based on user interface and software requirements

No code as basis for tests

Where to obtain data for the test cases?

Requirements documents, use cases, system functionalities, ...

© Fraunhofer IESE

System Testing

Order of test derivation for use cases

For each use case, do

Execute the „regular“ processing (legal values, expected results)

For each step in a use case, do

Check, if there are exceptions to the regular case

What happens? New test case

end

End

Compare with expected results (post condition) AND quality requirements

© Fraunhofer IESE

System Testing

Not only functionality in focus

Various specialized activities

Security Testing

Performance Testing

Usability Testing

Memory Management

…

What is important for your product?

© Fraunhofer IESE

System Testing

When should system testing start?

Write test cases as soon as the requirements specification for your
software (system) is ready.

This can be done as part of the requirements inspection.

Some of the test cases you have written do not require the whole
system for executing

Those can be executed as soon as all relevant parts of the system are
done (possible overlap with integration testing)

The others should be executed as soon as the system is completely
developed

© Fraunhofer IESE

Agenda

Introduction

Functional Testing

Structural Testing

Unit Testing

System Testing

Test Documentation

© Fraunhofer IESE

Test documentation using IEEE 829

IEEE 829: Test documentation provides documentation templates

Define test tasks, required inputs, and required outputs

Requirements Traceability Matrix (Requirements Test cases)

Document what you did and why

Document deviations from the plan

Provides structure for the whole testing process

Breaks down overall plan into smaller parts

Here: testing is split up into unit testing and system testing

Separate documents for planning and test cases

© Fraunhofer IESE

IEEE Standard for Software and System Test
Documentation

(Source: IEEE 829:2008)

Overall test processes, activities, and
tasks

Scope of test level
Resources
Methods

More details, e.g., features to be
tested

Input, Output
Test environment

Test Setup
Execution instructions

© Fraunhofer IESE

IEEE Standard for Software and System Test
Documentation

(Source: IEEE 829:2008)

Testing progress
All results

Incorrect or
unexpected
results

Aggregation of
results per test level

Aggregate pass/fail
Aggregate test results

© Fraunhofer IESE

Test Documentation

What do you need?

You don´t need all of these documents (no need to comply to IEEE 829)

Testing has to be reproducible and traceable (others have to be convinced)

Use the Requirements Traceability Matrix

Show how you structured your tests for breakdown
(from system-wide to unit- (function-) wide)

Use the same defect management as during inspections (*.xls?)

Use some of the test report templates for structuring and presenting the
results

If information is already written down somewhere else, just reference it!
(There is no need for filling pages – quality counts, not quantity)

© Fraunhofer IESE

Standards – IEEE 829

Example: Master Test Plan

Main test planning and test management document

Set objectives for each part

Set the division of labor (time, resources)
and interrelationships between the parts

Identify

Number of levels of test

Overall tasks to be performed

Documentation requirements

Appendix: more information

© Fraunhofer IESE

Standards – IEEE 829: Example

C
on

cr
et

iz
e

Structure:
For each level of testing
there is a specific LTP

For each type of testing
there is a specific LTD

For each set of test cases
there is a specific LTC

For each test case there
are specific LTPs

(The Master Test Plan of course also covers the
other test levels)

© Fraunhofer IESE

Standards – IEEE 829: Example

MTP

LTP

LTC

LTD

LTP

Module testing

Functional testing

Set of test cases (specific technique)

Details of test cases

Steps for executing test cases (i.e. test steps)

Test specification

© Fraunhofer IESE

Standards – IEEE 829: Example

© Fraunhofer IESE

Standards – IEEE 829: Example

1. …
2. …
3. …

© Fraunhofer IESE

Closing remarks

Some hints

Test the performance and the memory management on the iPad
(Have you tried to provoke memory warnings?)

System testing should be done manually at least the first time a test case is
executed

You can capture your test runs, and replay them later
(e.g., when new functionality is added, code has changed, …)

Test the most riskiest parts first
You may not have enough time to test all you want

Which parts of the implementation were the most challenging?
Which parts of the implementation are the most important ones?

© Fraunhofer IESE

Literature

[1] Liggesmeyer, Peter: Software-Qualität. Testen, Analysieren und Verifizieren von
Software, 2. Aufl. Heidelberg : Spektrum Akademischer Verlag, 2009.
ISBN 978-3-8274-2056-5 (in German)

[2] Craig, Rick D. ; Jaskiel, Stefan P.: Systematic Software Testing Boston : Artech House,
2002. (Artech House Computing Library). - ISBN 1-58053-508-9

[3] IEEE Computer Society: IEEE 829: IEEE Standard for Software and System Test
Documentation, New York, 2008

[4] Myers, Glenford J.: The Art of Software Testing New York : John Wiley & Sons, 1979.
(Business Data Processing). - ISBN 0-471-04328-1

© Fraunhofer IESE

Good Luck! Any Questions?

