
© Fraunhofer IESE

Architecture

By Glib Kutepov

Glib.kutepov@iese.fraunhofer.de

© Fraunhofer IESE

2

Outline

1. Why Architecture?

2. What is Architecture?

3. How to create an Architecture?

• Alignment

• Modeling and Structuring

• Architectural Views

• System decomposition

• Design for quality

© Fraunhofer IESE

3

--- Why Architecture? ---

© Fraunhofer IESE

4

What is the mission of Software
Engineering?

• Create a

• Large-scale

• Long-liv ing

• software system, with the:

• Necessary functionality

• Adequate quality

• Adequate cost

• in the

• Adequate time

© Fraunhofer IESE

5

What are the challenges?

• Complexity of the system itself

• Interconnection of the systems (e.g. SAP R/3)

• Continuous change of the system

• Distributed development processes

• Technology choice

© Fraunhofer IESE

6

What are the reasons?

1. Complex functionality

2. Importance of quality

• Time to market

• Maintainability

• Fault tolerance

• …

[Source: P. Clements, Software Product Line Architectures,
Presentation at RiSE Summer School on Software Reuse]

© Fraunhofer IESE

7

What is the solution?

• Develop your system architecture centric

• In your architecture:

• Take care of crucial challenges

• Find appropriate solutions for these challenges

© Fraunhofer IESE

8

--- What is Architecture? ---

© Fraunhofer IESE

9

Architecture is about

• Alignment

• Adjustment/Optimization of the relationship

• between Business and Technology

• between Requirements and Solutions

• Modeling and Structuring in the software system

• Manage complexity (separation of concerns)

• Blueprint for the development

© Fraunhofer IESE

10

Architecture is

• Tool for

• Description of the decisions made

• Prescription of the way things should be implemented

• Prediction of the future properties of the system

• Set of activ ities

• Which you carry out during the project lifecycle

• Customer interviews, design, documentation etc.

• Set of artifacts

• Which you produce during the project lifecycle

• Documents, wikis, POCs etc.

© Fraunhofer IESE

11

--- How to create an architecture?---

© Fraunhofer IESE

12

---Take care of Alignment---

© Fraunhofer IESE

13

Alignment

Technology (-specific) Level

Business Level

Business

Technology

Architecture

Problems

Solutions

How good are
the solutions?

© Fraunhofer IESE

14

Business Level

Software

Architect

Customer

Management …

• People with their Problems

• Stakeholders with their Concerns

Developer

I want nice IDE

Tester

I want memory profiling tools

Developer

Management

I want to parallelize work

Maintainer

I want to use my monitoring tools

Project Manager

I want to outsource to india

End User

I want nice UI

© Fraunhofer IESE

15

Concerns/Architectural Drivers

• Concerns – things which drive your architecture

• They come from Stakeholders

• Identify Stakeholders

• Find out their concerns

• Start with Stakeholder Analys is…

© Fraunhofer IESE

16

Analyzing Stakeholders – Overview

Scoping of

Architectural

Context

Outline

Architectural

Drivers

Organize

Stakeholder

Concerns

© Fraunhofer IESE

17

--- Step 1: Scope Architectural Context ---

© Fraunhofer IESE

18

Why Scoping the Architectural Context?

• Know where to stop

• Without a clear scope

• You might promise too much

• Hard to reverse later

• Hard to keep to

• Unnecessary things

• You will waste time

• Of your team

• Of your customer

© Fraunhofer IESE

19

Scoping of the Architectural Context

1 – Capture common vocabulary

• Identify common terms (Glossary)

2 – Identify main business goals

3 – Determine architecture scope

• Scope of functional areas to be provided by the architecture

• External systems to interface with

• Identify constraints

© Fraunhofer IESE

20

--- Step 2: Organize Stakeholder Concerns ---

© Fraunhofer IESE

21

Collect

Stakeholder

Concerns

Organize

Stakeholder

Concerns

Identify

Stakeholders

Document

Concerns

Organize Stakeholder Concerns –
Overview

© Fraunhofer IESE

22

Business Level

Software

Architect

Customer

Management …

• People with their Problems

• Stakeholders with their Concerns

Developer

I want nice IDE

Tester

I want memory profiling tools

Developer

Management

I want to parallelize work

Maintainer

I want to use my monitoring tools

Project Manager

I want to outsource to india

End User

I want nice UI • Identify them
• Ask them for their concerns
• Collaborate with RE team

© Fraunhofer IESE

23

What are Architectural Concerns

• Business goals

• Develop a line of products, tightly integrate with SAP etc.

• Quality attributes

• Banking application without a password

• Runtime: Performance, Security

• Development time: Maintainability, Accountability

• Key functional requirements

• What is system supposed to do?

• Only the ones which influence architecture

• Constraints

• Organizational and technical (e.g. use ISO XML, keep data in DE)

• Cost and time

© Fraunhofer IESE

24

How to Document Concerns?

• Use Architectural Scenarios for

• Quality Attributes

• Functional Requirements

• You may use text for

• Business goals

• Constraints

• What are the architectural scenarios?

© Fraunhofer IESE

25

“A s ituation which the system
must be capable to cope with in

order to satisfy the specific
quality attribute or architectural

requirement”

© Fraunhofer IESE

26

Why Architectural Scenarios?

• You need to make things price enough

• There is no standard meaning of what it means to be “secure”

• If you don’t know what is “secure” you can’t check if it is “secure”

• Scenarios help us to avoid all of these problems

• They are precise and verifiable

© Fraunhofer IESE

27

Types of Scenarios

• Functional Scenarios

• Show functional executions of the system

• Might be Use Case Scenarios

• System Quality Scenarios/Quality Attribute Scenarios

• Focusing on the non-functional aspects of a system

• Are a means for formalization

© Fraunhofer IESE

28

Documenting Architectural Scenarios

Scenario Name of scenario

Quality Related quality attribute

Environment Context applying to this scenario

Stimulus The event or condition arising from this scenario

Response The expected reaction of the system to the scenario event

Response

Measure

The measurable effects showing if the scenario is fulfilled by the
architecture

© Fraunhofer IESE

29

Example

Scenario Extension #1 new Device at Runtime

Quality Flexibility (Extensibility)

Environment The system has been delivered with 3 devices, The system is in operation
(normal)

Stimulus A new device is to be integrated

Response The system recognizes the new device and installs it in order to be used by the
applications [up to 10 devices]

Response

Measure

(Down-time of the system or its services +) Installation time of the new device is
below 1 min

© Fraunhofer IESE

30

Usages of Scenarios

• Input to the architecture definition process

• Evaluating the architecture

• Communication with stakeholders

• Finding missing requirements

© Fraunhofer IESE

31

--- Step 3: Outline Architectural Drivers ---

© Fraunhofer IESE

32

Outline Architectural Drivers/Concerns

• Prioritize!

• Wish ^= need

• Importance

• Risks

• Make tradeoffs

• Say no

© Fraunhofer IESE

33

Recall your state

• You have identified, precisely defined and document architectural drivers:

• Business goals

• Functional requirements (via Scenarios)

• Quality requirements (via Scenarios)

• Concerns

• Now you need to find and express your solutions

• Let’s start with the expresion…

© Fraunhofer IESE

34

---Take care of Modeling and Structuring---

© Fraunhofer IESE

35

“Software architecture is the
structure or structures of the system,

which comprise software elements,
the externally visible properties

of these elements,
and the relationships among them.”

[Bass et al., SA in practice]

© Fraunhofer IESE

36

Modeling and Structuring Because

• You need to model your system in order to manage complexity

• Abstraction

• Your model is the set of structures

• You express your design decisions in structures

• What elements are there?

• What are they for and what do they expose?

• How do they work together?

© Fraunhofer IESE

37

How many structures?

• No single structure expresses the architecture of the system

• Too complex

• Doesn’t resolve the complexity problem

• Separation of concerns

• Use structures to express particular aspects of the system:

• System @ runtime

• Elements: Components, processes, computational nodes, …

• Relationships: Calls, is executed by, …

• System @ development time

• Elements: Module, class, development team, …

• Relationships: Is decomposed into, is developed by, …

© Fraunhofer IESE

38

Structure 1

• Commonly used structure

• Layered architecture

• That’s not enough

• Meaning of boxes and lines?

• Other structures needed

[Source: Microsoft]

© Fraunhofer IESE

39

Structure 2

• Behavior

• How is functionality realized by components

• How do components communicate?

© Fraunhofer IESE

40

Structure 3

• Allocation

• How are software elements allocated to hardware elements?

• How are development tasks allocated to development teams?

© Fraunhofer IESE

41

---Represent Structures with Views---

© Fraunhofer IESE

42

Sculpture “SWING” by Arie Berkulin

© Fraunhofer IESE

43

View 1

http://www.planungswerkstatt-bau.de

© Fraunhofer IESE

44 http://www.planungswerkstatt-bau.de

View 2

© Fraunhofer IESE

45 http://www.planungswerkstatt-bau.de

View 3

© Fraunhofer IESE

46

Benefits of Views

• Separation of Concerns

• Separate Analyses

• Complexity reduction

• Focus on a particular concern only

• Communication with Stakeholders

• Adjust the language

• Especially developers … focus on implementation relevant
portions

© Fraunhofer IESE

47

Which Views?

• No general set of views

• Architect selects useful views

• Depends on

• The system

• The stakeholders

• Their concerns

• How they will use the documentation

© Fraunhofer IESE

48

“When developing a v iew, be clear in your

mind what sorts of concerns the view is
address ing, what types of architectural

elements it presents , and who the viewpoint
is aimed at. Make sure that your

stakeholders understand these as well ”
[Rozanski, Woods, 2006]

© Fraunhofer IESE

49

Standard Views

• System or Context View

• Component & Connector View

• Structural Part

• Behavioral Part

• Data View

• Module and Implementation View

• Deployment View

• Team-Assignment View

© Fraunhofer IESE

50

Represent Views with UML

Sequence Diagrams

Package Diagrams

Deployment Diagrams
Component Diagrams

© Fraunhofer IESE

51

UML and Views

• System or Context View: Deployment Diagram

• Component & Connector View

• Structural Part: Component Diagram

• Behavioral Part: Sequence Diagram

• Data View: Class Diagram /Component Diagram

• Module and Implementation View: Package Diagram / Class Diagram

• Deployment View: Deployment Diagram

© Fraunhofer IESE

52

Recall your state

• You have identified, precisely defined and document architectural drivers:

• Business goals

• Functional requirements (via Scenarios)

• Quality requirements (via Scenarios)

• Concerns

• You know how you express your solutions

• Now you need to know how you find the solutions

© Fraunhofer IESE

53

--- Decompose your System based on Functionality ---

© Fraunhofer IESE

54

Decomposition

• … is context-sensitive

• … in practice, systems are typically decomposed driven by functionality

• … not much guidance possible

© Fraunhofer IESE

55

Functional (De-)Composition

• Goal of decomposition: Reduce coupling of elements

• E.g. Use Adapters for communication

• Goal of composition: Increase semantic cohesion btw. Elements

• Elements that change together are packaged together

• Elements that are used together are packaged together

• E.G. Flight Manager, SAP Adapter etc.

© Fraunhofer IESE

56

Decomposition Steps

1. Identify elements

• Identify responsibilities

• Identify unique, self-contained roles/elements

• Identify types of composed/aggregated elements

2. Identify dependencies

• Identify data/information exchange requirements

• Identify interfaces

• Identify dependency types (The dependency graph of elements must
have no cycles)

© Fraunhofer IESE

57

--- Add Quality Aspects ---

© Fraunhofer IESE

58

Addressing Quality

• You need a solutions for your architectural scenarios, don’t you?

• You can apply your own solutions or…

• …use proven solutions - patterns

• Solution to the Problem in the Context

• Patterns can be classified according to the decomposition dimensions

• Development-time Patterns (e.g. MVC)

• Runtime patterns (e.g. Job Scheduling, Heart-beat)

• Know them, use them!

© Fraunhofer IESE

59

--- Use Tools ---

© Fraunhofer IESE

60

Tool Support for Architecture Modeling

• First use paper

• Then use Enterprise Architect – UML Modeling tool

• Use word for documenting things

© Fraunhofer IESE

61

Recall your state

• You have identified, precisely defined and document architectural drivers:

• Business goals

• Functional requirements (via Scenarios)

• Quality requirements (via Scenarios)

• Concerns

• You know how do you express your solutions

• You have found the solutions

• You have expressed and documented your solutions

© Fraunhofer IESE

62

--- Are you done?---

© Fraunhofer IESE

63

Hard question…

• You are done when

• Key requirements are clear and addressed

• You have confidence that they can be achieved

• The structure(s) of the system are clear

• You can start Implementing:

• assign work units to developers

• control the parallel development and integration

© Fraunhofer IESE

64

You have done Alignment, Structuring and
Modeling

Technology (-specific) Level

Business Level

Architecture

Constraints
Business

Goals

Quality

Attributes

Functionality

Operating

System
 Middleware

Replication REST interfaces

+ Structures

© Fraunhofer IESE

65

Implementation

Architecture Functionality

You can start your implementation

© Fraunhofer IESE

66

In the real world the story only starts…

Feedback
Optimization
Refinement

Implementation

Architecture

Evolution
Migration
Reconstruction

…

So, be brave!

© Fraunhofer IESE

67

Thank you

